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1.0 INTRODUCTION
1.1 BACKGROUND AND OBJECTIVE

A problem which has long been of importance to the experimentalist
is the determination of radially dependent physical properties in
axisymmetric sources from measurements of integrated properties along
a line of sight. One important example of this type of problem is
the calculation of the radial distribution of emission coefficients
from observations of the radiance (radiated power per unit area per
unit solid angle) from a cylindrically symmetric radiating source. When
the source is optically thin, the solution to a problem of this type is
usually reached by the use of the Abel transform (Ref. 1). The appli-
cation of the Abel transform in this instance requires the emission
coefficients to have cylindrical symmetry. With the cylindrical symmetry

assumption, the measured radiance, I(x), can be written (Fig. 1) as

l(x)_zj’ ‘”_" (1)

x (r—x)

Here I(x) is the measured radiance (radiated power per unit area per unit
solid angle), which is a function of the displacement x, r is the local
radius, R is the maximum radius of the source, and e(r) is the emission
coefficient (radiated power per unit volume per unit solid angle). Note
that I at each x is the result of integrating the emission coefficient

€ across the extent of the source, The factor 2 arises because of the
cylindrical symmetry assumption. Equation (1) is a form of the Abel
integral equation (Ref. 2).

The use of Abel's transformation yields

e(r)—-— I _dl/dx dx (2)
(x - )
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Equation (2) is the inversion equation which gives the radial emission
coefficient in terms of the geometry of the source and the measured
radiance distribution. Details of the development of Eqs. (1) and (2)

are found, for example, in Ref. 1.

<

eln

A

Figure 1. Geometry of the axisymmetric source.

A number of methods have been applied to the solution of Eqs. (1)
and (2) to obtain the radial distribution of the unknown emission coeffi-
cient €(r). An early approach documented by Pearce (Ref. 3) depends
upon finding the areas of homogeneous zones in the plasma and replacing
the integral by a summation over the zones. Nestor and Olsen (Ref. 4)
make a transformation of variables such that r2 = v and x2 = u and assume
that I'(u) is constant over each small interval. The subsequent series
of integrals may then be evaluated, and Eq. (2) 1is approximated by a
sum. Bockasten (Ref. 5) fitted third-degree polynomials exactly to the



AEDC-TR-76-163

data points and approximated Eq. (2) with a sum. Numerical methods such
as those described in Refs. 3 through 5, which do not use smoothing of
the raw data, have an intrinsic disadvantage in that small errors in the
radiance can lead to fairly large errors in the emission coefficient

because of inaccuracies in the derivative of I(x).

Some investigators have used smoothing techniques utilizing curve
fitting or other mathematical approximations in an attempt to reduce the
effect of experimental error in the data. Freeman and Katz (Ref. 6)
least squares fitted a single curve to the raw data. Barr (Ref. 7) used
least-squares polynomials to determine the best fit of the data over a
number of intervals centered about each data point. Birkebak and Cremers
(Ref. 8) used a method similar to that of Barr. The data were least-squares
curve fitted to polynomials over a number of data intervals. Dooley and
McGregor (Ref. 9) directly applied the integral in Eq. (2) by using the
experimental data and a coordinate transformation of the integrand to

provide a means of numerically solving the integral.

Comparisons of various techniques (Ref. 8) indicated that, in general,
smoothing techniques yield better final results than other methods, parti-

cularly when there is appreciable scatter in the data.

A major problem with any method of solving the problem described by
Eq. (2) is that of determining the effect of experimental error in the
measured radiance values upon the resultant values of the emission
coefficient. In an effort to obtain error propagation information, some
investigators have applied their methods of solution to simple problems
in which analytic solutions could be determined (Refs. 8 and 10). By
using scattered and unscattered input data (i.e., radiance values) and
by comparing the resultant emission coefficient values with their
analytic values, the investigators were able to obtain empirical infor-
mation on the error propagation characteristics of the techniques as

applied to particular test problems. However, at present, no general
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analytic method has been developed which, after a prior analysis of the
input data, follows the propagation of experimental error throughout the
numerical steps of the specific technique. It is the purpose of this

investigation to describe a method for smoothing the data for inversion

and to develop a concomitant error propagation analysis.

1.2 CRITERIA FOR CURVE FIT CHOICES

Before proceeding to the description of the specific technique, it
would be useful to consider some of the more subtle consequences of curve
fitting in order to define a criterion by which the curve fit choices used

in the work reported herein were made,.

Experimental data are subject to random uncertainties and are
generated by a physical phenomenon for which one does not necessarily
know the functional form. Indeed, specification of the functional form,
or an "adequate" approximation thereof, is generally the objective of
the analysis. Because of the experimental scatter in the data, one may
be uncertain of its correct functional form. The usual approach in such
situations is to curve fit the data to some smooth functional form either
by analytical or graphical techniques. When the analytic approach is used,
the data are often fit to a specific polynomial in the independent variable.
However, as 1s often readily apparent, the first choice of polynomial often
cannot do an "adequate" job of fitting the data, and other polynomials are
tried. This failure of fit may be caused by the fact that the data are
simply not expressible by a polynomial function. Similarly, for the same
reason, there are often several choices for polynomials which appear to
"adequately" fit the data. Yet, each polynomial is different and will
yield somewhat different results. Hence the results of a smoothing process
cannot be considered unique insofar as the underlying physical phenomena
are concerned, and there can be a large number of possible solutions.
(Note that, for a given set of data and a specific polynomial form, the
numerical solution is unique; it is the resultant, derived description of

the underlying physical phenomena which is not unique).

10
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The observation that it is generally unreasonable to expect a
polynomial to provide an adequate representation of some physical phenome-
non over a wide range of the independent variable prompted the appreach
described herein. The data are divided into several intervals, and a
different polynomial is assumed valid over each interval. Since physical
phenomena are generally smooth, the polynomials are constrained to be
smooth and continuous at interval boundaries. Since the data are expected
to be randomly scattered, a final least squares constraint is imposed to

provide smoothing capabilities.

If the experimental error is propagated through a curve fitting process,
one can obtain an estimate for the error, or uncertainty in the results.
Even though the correct functional form may not be that chosen for fitting,
the errors are propagated as though the chosen function is the correct
one. If the chosen function provides an "adequate" representation of the
raw data, it is expected that the derived results provide an "adequate"
representation of the true physical phenomenon. Thus the propagated errors
induced by the data uncertainties are an "adequate'" representation of the
uncertainties in interpretation of the physical phenomenon. For the
application described herein, when several functions appear to give
"adequate" curve fits, their results and propagated uncertainties agreed
well with each other. This observation makes a strong favorable argument
that the results are in fact descriptive of the underlying physical phe-
nomenon, However, it must be remembered that the propagated uncertainties
describe the uncertainties in the data fitting the chosen form and not the

uncertainties in the chosen function fitting the physical phenomenon.

Since, for a given set of data, there may be a wide choice of possible
curve fits, the choice of which curve fit to use is highly subjective and
generally must be left to the investigator. The criteria for determining

which result to use are as follows:

11
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1. Choose the set of functions which performs an acceptable
fit to the data, based on the observed error propagation

characteristics.

”

2, From the set of functions chosen by (1), pick the
function which provides the best error propagation

characteristics for the problem.

Although the foregoing discussion may appear obvious to the experienced
data analyst, the underlying theme has been that there can be no procedure
or set of conditions which will unequivocably define the correct curve
fits in all cases. The error propagation analysis provides only additional

objective data for what is finally a subjective decision.
1.3 TECHNICAL APPROACH

The numerical approach is based on a curve-fitting method which uti-
lizes a least-squares polynomial spline fit technique (Ref. 11) to
smooth the data. The Abel inversion is effected by dividing the raw
data into several small intervals and obtaining a least-squares polyno-
mial curve fit to the data in each interval. Since the integral is a
linear opérator, the emission coefficient integral, Eq. (2), is expressed
as the sum of several integrals; each integral applies over a different
interval of data, and in each case the radiance data are expressed by a

different polynomial. The emission coefficient is expressed as

Z

=1 dI. 5 /dx dl/dx

5(:):-1 I —J_!__ —— Z I dx (3)
7 29 92Uy 2 “

T (x =r) _l(x—r)

where the subscript i1 identifies the particular interval for evaluation,

21_1 and Zi denote the endpoints of the interval, n is the number of

intervals required to span the data, and in all cases r is less than

Zj-1.

12
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For the values of the emission coefficients to be physically correct,
the polynomials must be constrained to be smooth and single valued at
interval boundaries and also must satisfy the assumption of cylindrical
symmetry. The cylindrical symmetry assumption is easily accounted for

by using an even function of the form

2 3 6
]i(x)=a” + 83X + 83X + a,4X (4)

where the subscript i denotes the ith interval. The functions in adja-
cent intervals are designed so that their ordinate, slope, and second
derivatives have the same value at the endpoints of adjacent intervals.
Thus, the coefficients of a sixth-degree, even polynomial over each inter-
val of data are determined such that a best fit in the least-squares

sense over the entire set of data is obtained with the condition that

the polynomials and their first derivatives are smooth and their second
derivates are continuous at the interval boundaries. With I(x) repre-
sented by a series of polynomials in the form of Eq. (4), the integrals
become expressible by direct integration in closed form over each inter-

val of the spline fit.

Another constraint upon the functional representation of the
physical data which is imposed by the development of Eq. (2) is that it
must have zero slope and ordinate at the boundary of the cylinder. This
constraint is imposed artifically by obtaining a new curve over the last
interval after the other intervals have been fit with the proper constraints.
The constraints of continuous first derivative and smooth ordinate are
maintained at the interval boundary for this artifical curve. The con-
struction of the artifical curve reduces the accuracy of the curve fit
intensity values in the last interval. However, the curve fit values of
all the other intervals are unaffected, and in general the data in the last
interval are very near to zero, quite inaccurate, and insignificant with
respect to the rest of the data. When the results of the inversion in the
last interval are important, the method described herein must be applied
cautiously. A computer program to perform the analysis developed herein

is described in Appendix A.

13
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2.0 NUMERICAL 1INVERSION TECHNIQUE AND
ERROR ANALYSIS

2.1 NUMERICAL TECHNIQUE

As was indicated in Section 1.0, the problem which prompted the present
investigation was the development of a method to analyze the effect of
experimental error in observed radiance data upon the emission coeffi-
clent values obtained by the solution to the Abel inversion problem. A
measure of the experimental error in the radiance data is provided by the
standard deviations of the radiance values which are determined from the

experimental data.

From statistics theory, it is known that if a matrix vector
equation, A = MB, can be written where M is a transformation matrix
relating the vectors A and B, then a relationship between the standard
deviations of the elements of vectors A and B can be derived. The first
step in the error analysis is the development of the matrix-vector equa-
tion, E = FY, where Y is a vector containing the radiance data values, and

F is a matrix relating the vectors Y and E.

Since the data are to be divided into intervals, denote the displace-

ment values which are endpoints for the kth interval by Z and Zk and

k-1
k=1,..., n. Note that for n intervals there are (n + 1) zj values,

j =0,..., n. The polynomial in each interval can be written as

4

P ()= 3 a 2 k21,2,
i=1 (5)

Zy

__1<x</..k

where n is the number of intervals into which the data points have been
gseparated. The coefficients a4 will in general be different for the
polynomials representing each interval.

14
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Since the raw data in each interval are to be least-squares curve
fit to polynomials of the form of Eq. (5), an expression for the sum
of the squares of the deviations of the curve fit values from the actual

(input) radiance values is needed for each interval. For this purpose, let

m,
k 2

Sk(“kl~ak2- 3. ak4) =2 [l(xj) - Py (VJ)] k=1,2,...,n )
i=1

7 k-1 < x; < 2y

where n is the number of intervals, m is the number of data points in the
kth interval, and the displacements xj are numbered independently in
each interval. The value of Sk in each interval must now be minimized

subject to the constraints:

Sp,1 (B ps 8gon g ayy) = PL(Z)) - P () = 0

P2 (Axp o mgaay) = B2~ PL((Z) < 0
. (7
Gia (g age ag ) = PUUZY) - P (2 =0
k=1,2,....(n=-1)

where Pi(x) is the first derivative of the function Pk(x), with respect

to the coordinate x, and Pi‘(x) is the second derivative. These constraints
express the conditions required for the ordinate, slope, and second deri-
vatives of the fitting polynomials for adjacent intervals to be continuous
at the interval boundary. This continuity constrains the formulation to

provide a more nearly correct representation of the real physical data.
Lagrange's method of undetermined multipliers (Refs. 12 and 13) can

be used to minimize Eq. (6) subject to the constraints expressed by
Eqs. (7). Let ) ’

15
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3

Fyla). app.ap5,a4) = 51+Z ALi®L
j=1

(8)

3
[:k(akl, ak2' ak3’ ak4) Sk +2 (Ak—l,j ¢k—' lv] + I\k] ¢k])

j=1

l‘n (an]’ 8p2r 8p3s ﬂn4)

]
wn
=]
M
>
=
1
=]
|

k=2,3,...,(n—1)

where n is the number of intervals and the )‘mj values are the Lagrange

multipliers.

The parameters, Amj’ and the coefficients, 4y which effect the

necessary minimization are determined from the 4n equations

F <= ..
6 k= , l\ 1,2,. , I (9)

da,, i=1,23,4

(}2)

and the 3(n-1) equations

m=1,2,...(n=1)
j=1.23

%) 6,5 = (10)

The constant multiplier, 1/2, is introduced in Eqs. (9) and (10) to put

the equations in a form which is convenient for subsequent developments.

16
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By expanding Eq. (9) for k = 1, one obtains

m m ) my

m
2 4 6 .
ayym; + ajo 2:"; + oag X; + "’142:"i + 2 Ay = kL

|=I i=l l:] i=l

my my m, m

, 2 ' 6 s
a2 X+t vyg 2%+ a3 2 x; - apy + ——’\n + LyApg

1=1 i=1 i=1 1=1
“II

+ 1\13 =Zx2i I

1=1

m 1 m 1 I'Ill

7
4 6 8 2:10 073
3112: - a122: pagdyx oy 2%t A+ 2 a1

1=1 i=1 1= 1 i=1

mj

6 8 10 12 g
ap 2 :"i M2 2% T M3 luN o fluN t o M

i=1 i=1 = i=

ml

32 A, 4 15230 = D ST,

i=1

where the xi's are the displacement values, Z1 is the second endpoint,
m, is the number of points in the first interval, and Ii = I(xi).

The constant multiplier, 1/2, in Eq. (9) has the effect of eliminating
the factor of 2, which is introduced in Eq. (9) by the differentiation.

Expanding Eq. (9) for k = 2, 3, ..., n yields more equations similar
in form to Eq. (11).

17
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Expanding Eq. (10) for m = -1 yields

6 2

" 7-? Z‘; Z) "y Z) Z‘; 261

ha 4+ ———a - ———a + — @& - 08, - —a —_— — — =
28] 5 212 2 213 > 214 21 5 222 ;223 o824 0

003 5 3 o5

2 - 2
312 + 6&]8]3 + 1324'15.14 —_ 8.22 -— 621323 -— 1521&24 = 0
Equations of similar form are obtained form = 2, 3,..., (n-1).

Equations (4) and (10), with Eqs. (11) and (12) describing represen-
tative algebraic details, are the least-squares spline fit equations and
represent a system of equations which can be written in the matrix-

vector notation

BA =C (13)

where B is a (7n - 3) by (7/n - 3) symmetric matrix, A is a (7n - 3) by

1 matrix which has as elements the 4n coefficients, a,,, and the 3n - 3

ki
multipliers, Amj’ and C is a (/7n - 3) by 1 matrix, where n is the number

of intervals into which the data points have been divided.

The matrix B can be partitioned into

R N (14)
B =
NT o

where R is a 4n x 4n block diagonal matrix which is defined as

R - _ (15)

0 . n

18
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The matrices Pj are 4 by 4 symmetric matrices which are defined (letting,

for convenience, Ej = m, + m, + ... + mj and Sj = m, + my ... + mj-1 +1)
[ . . ]
Ej' 2 Ej 4 j 6
m.
J Exi X; in
i=S; i=§; i=$;
% % \ Ej g
8
Zx:i X; ZX6i le
l=g l=S i=§- l=S
] ] ]
PJ = (16)
Ej \ ffj I!l: EJ
6 8 10
2% = 2% XX
I=S] 1=Sj i=51. 1=ql
E]. ) Ej . f . Ej .
)IETD DD DL >
I=S] i=SJ i=s] = S] -J

N is a 4n by (3n - 3) block band matrix defined as

p—

Q, T
-0 Q
-Q,-

N - 0 (17

n-1

n=1
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The matrix N consists of a block diagonal and one block lower co-diagonal.
NT is the transpose of the matrix N. The matrices Qj are 4 by 3 matrices
defined as

1 0 0 T
)
77
] Z 1
2 J
Qj - . (18)
Z; 3 2
_J 2Zi 67
; j
6
Z. -
3 375 157}
9 ) }
i _

Noting the right side of Eqs. (11) and (12), one can write the matrix

C as

C = GY 9

where G is a (7n -~ 3) by p matrix of certain powers of x, the p-indepen-
dent data points, with the elements of the last 3n - 3 rows all zero, and
y is a p by 1 matrix of the p-dependent variable data points I(x) (that is,
the radiance values). Note that p = m, + m, + ... + m .
For ease of representation the matrix G may be partitioned into a
block diagonal matrix
51
Sg
G = T (20)
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where each Sj is a 4 by m, matrix:

h|
- -
1 1 ]
2 2 . 2
xm]—l"'] xmj_l-—ﬁ xmj_]+ m.l
4
X 4 4
. 1 . e 3
S]= "I,_]+ xmj_].o-f.’ ‘m]_l ij (21)
6 6 L 6
x:nj__l+l x:nj_] -2 xmj—l |-mj
Writing Eq. (13) as
A-8B'¢ (22)
and substituting Eq. (19) yields
A-B'oy (23)

where B-1 is a (7n - 3) by (7n - 3) matrix, which is the inverse of B.

Equation (23) can be written as

A - WY (24)

where A is the (7n - 3) by 1 matrix, which has as elements the coefficients,
ay 4o and the multipliers, Amj' Y is the p by 1 matrix of data intensity
values, and W equals B-1G, a (n - 3) by p matrix.

Performing the integration of Eq. (3) with the polynomials of the

form of Eq. (4) yields

1

(x2 - r2 )A
w

4 22 4 Z; C ( 2 2)%
-(3 4 8‘]| I~ - L [2 o -
x + 4xt° ¢ 8r) i E - ag;

i=j

p 4 2 2 6
[2a2‘j_] Ll PR (x"+ 217) + 15 241

6([‘) = -

(25)

yA

4 2 2 6 4 2
+ Ta"ﬁ (x" +2r°) + y a,. (3x + 4x r2 + 8r4)]

™3
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where k 1s chosen so that r is always less than Zk. Expanding Eq. (25)
for several values of r, one can write the resulting system of equations

in the matrix-vector form
E = MA (26)

where E is an m by 1 matrix of values of the emission coefficient e(r)
evaluated at m different values of r, A is a (7n -3) by 1 matrix defined
by Eq. (13), and M is an m by (7n - 3) matrix with the elements of the

last 3n = 3 columns all zero.

Substituting into Eq. (26), the expression for the matrix A from
Eq. (24) yields

E = MWY (27)

By performing the matrix multiplication

F =MW (28)

Eq. (22) can be written as

E=FY (29)
where E is the m by 1 matrix of values of the emission coefficient e(r)
evaluated at m different values of r, Y is a p by 1 matrix of the

p-dependent variable data points I(x), and F is an m by p matrix providing
the transformation from the Y space to the E space.

2.2 ERROR ANALYSIS TECHNIQUE

To complete the development of the technique to include the error
propagation analysis, it is necessary to utilize some definitioms and
results from statistics theory (Refs. 14 and 15). The expected value
of a random variable x, denoted by & (x), is obtained by finding the
average value of the function over all possible values of the variable.
The expected value of a matrix or vector M, denoted by &(M), is the
matrix of the expected values of the elements of M. The moments of a
distribution are the expected values of the powers of the variable which

have the given distribution.
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Let u. denote the first moment or mean of the emission coefficient

function e(r) and let M1 denote the mean of the radiance function I(x).

Then
o = E(F) = &(FY) = FE(Y) = Fy (30)

The covariance matrix of E, denoted by [E]cv’ is the m by m

symmetric matrix defined as

LE] = 5[(1::_,16)(F,-,L()T:| (31)

ch

where m is the number of different values of r at which the emission
coefficient e€(r) is evaluated. The following steps yield an expression

which can be used to evaluate the covariance matrix of E:

(£, = & [(E-p)(E 7]

cv

[
& [(FY-Fu(EY - F )]
Fg[F‘(Y—yl)(F‘(Y-uI)) ] (32)

& [FOY <up (Y ) FT]

(60 - ot - )

FIY] F'

LE]

cy

The term [Y]cv in Eq. (32) denotes the covariance matrix of Y, which is

an m by m symmetric matrix.

The diagonal elements of the matrix [Y]cv are identified with the
squares of the standard deviations of the radiance measurements. The
nondiagonal elements are the covariances between the various elements of
the matrix Y. In the present problem, since the individual observations
are independent, then the elements of Y (that is, the radiance data)
are assumed to be uncorrelated. Therefore, all of the nondiagonal
elements of the matrix [Y]cv are zero, and thus [Y]cv is simply a diagonal

matrix containing the variances of the radiance data.
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The matrix F provides the transformation from the Y space to the
E space. The form of the matrix is determined by the raw data and the
choice of numerical technique. The [E]cv is the covariance matrix of E,
and the diagonal elements are the variances of the emission cocefficient
values which have been calculated by the least-squares spline fit approxi-
mation to the data. The off-diagonal elements of the matrix [E]cv give the
covariance between the various emission coefficient values. The standard
deviations of the emission coefficient values are the positive square
roots of the diagonal elements of [E]cv' Thus, determination of the
matrix F, Eq. (28), and its use in Eqs. (29) and (32) provides the formal
solution to the inversion problem and the propagation of the random

errors associated with the measurements.
3.0 RESULTS AND DISCUSSION
3.1 INTRODUCTION

In the determination of the solution to a specific inversion pro-
blem, described formally by Eqs. (27) and (30), there are generally four
parameters which may be varied by the user. These four parameters are
(1) the total number of data points, (2) the distribution of the data
points chosen for analysis, (3) the number of intervals into which the
data are divided, apd (4) the number of points in each interval. Variation
of each of these parameters affects the elements of the matrix F, Eq. (28),
and the subsequent inversion and random error propagation results. Included
in this section are results of the Abel inversion of several sets of
analytic data chosen to illustrate the effect of variations of the above
four parameters on®the results of the Inversion. Also included, as an
illustration of the application of the method to typical experimental
data, are the results of the inversion of data taken in a recent research

experiment.
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3.2 ANALYTIC CONTINUOUS TEST DATA

Thirty-one data points are used to illustrate the technique. These

data points were generated from the function

[(x) = e 5 05x523.0 (33)

which may be inverted by Eq. (2) to yield the analytic function
2 2 2.Y%
e(r) =\]_]_ e ' erf[(ﬂ —r ] (34)
m

The number of data points and the displacement distribution were fixed,
leaving only the number of intervals and the number of points per inter-—
val to be varied. The inversion was applied to several cases with
different values of the free parameters. A standard deviation of 10
percent of each radiance value was assumed in each case. The displace-

ment radiance and standard deviations used are listed in Table 1.

The initial data configuration examined was formed by dividing the
data into four intervals, with seven points in the first interval and
eight points in the remaining three intervals. The results of inverting
the data with this configuration of the test data are presented in
Table 2 and Figs. 2 and 3, Figure 2 displays the input radiance data
as points and the results of the curve fit as a continuous line. Error
intervals equal in magnitude to the radiance standard deviations are
shown for each data point. Figure 3 displays the profile of the calculated
emission coefficients along with the calculated error interval for each

emission coefficient wvalue.

Another configuration of the same set of test data was inverted
after distributing the 31 data points into six intervals with five points
in the first five intervals and six points in the sixth interval. The
results of this case are presented in Table 3 and Figs. 4 and 5. Figure
4 shows the radiance and Fig. 5 the emission coefficient profile for

this configuration of the data. :
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A comparison of Tables 1 and 2 reveals that the percentage errors
between the curve fit data and the input data are generally smaller in
magnitude for the six-interval configuration than for the four-interval
configuration. Of the 31 percentage errors, 24 are smaller for the
six-interval configuration. Thils suggests that the curve fit of the
radiance data was better for the case of six intervals. Furthermore, of
the 31 standard deviation intervals displayed in each of Figs. 3 and 5,
22 are smaller for the six-interval case. This fact is illustrated more
clearly by comparing the calculated standard deviations of the emission
coefficient values for the two cases which are listed in the last columns

of Tables 2 and 3.

Table 1. Checkout Data with e*? Values
Used as Input Data

Displacement Radiance (Data) Standard Deviation

0.0 1.0000 E-00 1.0000 E-01
e.1 9. 80053 E-01 9. 8005 E-02
0,2 8. 807) E-01 8. 6079 E-02
0,3 9, 1393 E-01 §.1393 E-02
0.4 8,5214 E-01 8.5214 E-02
0.5 7.7880 E-01 7.7880 E-02
0.6 G. 8768 E-01 6,9768 E-02
0.7 6, 1263 E-0C 6. 1263 E-02
0.8 5,272¢ E-0.- 5,2729 E-02
0.9 4. 4860 E-01 4.4860 E-02
1.0 3.6788 E-01 3,6788 E-02
11 2, 9820 E-01 2,9820 E-02
1.2 2,3693 E-01 2,3693 E-02
1.3 1, 8452 E-01 1,8452 E-02
1.4 1.40858 E-0! 1,4086 E-02
i.b 1.0540 E-01 1,0540 E-02
1.6 7. 7305 E-02 7.7306 E-03
1.7 5.5576 E-02 5.5576 E-03
1.8 3.9164 E-02 3.9164 E-03
1.9 2, 7052 E-02 2.7052 E-03
2.0 1,8316 E-02 1.8316 E-03
2,1 1. 2155 E-02 1.2155 E+03
2.2 7.0C71 E-0% 7.8C71 E-04
2.3 5.0418 E-03 5.0418 E-04
2,4 3. 1511 E-03 3.1511 E-04
2,5 1,9305 E-03 1.9305 E-04
2,8 1.1592 E-03 1,1592 E-04
2.7 6. 8233 E-04 6.8233 E-05
2.8 3,9367 E-04 3,0367 E-05
2.2 2,2263 E-0¢ 2,2863 E-05
3.0 i, 2341 E-04 i,2341 E-05
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Table 2. Inversion Results Using Four Intervals of
e*? Values as Input Data

Percent Error

Displacement (C?la:&a;(:i) betw;::al:a:;iance Emassion Coefficient (ES‘:::‘;?:: g;’!'lfi:':':;t)
Calculated Radiance

0.0 1,000687 E-00 6.873565 E-02 5.673450 E-01 1,277898 E-01
1,000000 E-01 9,504464 E-01 4,003959 E-02 6.613535 E-01 1,183743 E-01
2.000000 E-01 9,604699 E-01 -3,331861 E-02 5,432904 E-01 9,255000 E-02
3.000000 E-01 9,128938 E-01 -1,133770 E-01 5, 148417 E-01 5,781569 E-02
4.000000 E-01 8,509355 E-01 -1,413484 E-01 4,783169 E-01 3.000306 E-02
5,000000 E-01 7,783793 E-01 -5.401784 E-02 4,365562 E-01 3.155638 E-02
G.000000 E-01 ©6,988567 E-01 1,686562 E-01 3,923847 E-01 3. 612286 E-02
7,000000 E-01 6, 149943 E-01 3.858220 E-01 3.470861 E-01 2.810619 E-02
8.000000 E-01 5,283764 E-01 3.956902 E-01 3.001493 E-01 1,929250 E-02
9.000000 E-01 4,455566 E-01 -6.784139 E-01 2,531834 E-01 1,210634 E-02
1.000000 E-01 3,668708 E-00 -2.743241 E-01 2.081161 E-01 8,488109 E-03
1,100000 E-00 2,960949 E-00 -7,059348 E-01 1.668016 E-01 9.052147 E-03
1,200000 E-00 2.351273 E-00 -7.608546 E-01 1,308842 E-01 1,032227 E-03
1,300000 E-00 1,846380 E-00 6. 396129 E-02 1,015773 E-01 9, 970046 E-03
1,400000 E-00 1.436843 E-01 2.005025 E-00 7.925598 E-02 7.552663 E-03
1,500000 E-00 1,094268 E-01 3.820451 E-00 6.210448 E-02 4,133476 E-03
1. 600000 E-00 8,000591 E-02 3,493838 E-00 4,684850 E-02 2.054649 E-03
1,700000 E-00 5,579709 E-02 3.978129 E-01 3.352474 E-02 2.698357 D-03
1,800000 E-Q0 3,703233 E-02 -5,442925 E-00 2, 244468 E-02 3.813321 E-03
1,800000 E-00 2, 362409 E-02 -1,267157 E-01 1,384293 E-02 4,234182 E-03
2,000000 E-00 1,510630 E-02 -1,752401 E-01 7.840132 E-03 3,858621 E-03
2. 100000 E-00 1,057220 E-02 -1,057220 E-01 4,382284 E-03 2, 596808 E-03
2,200000 E-00 8,606659 E-03 8.872517 E-00 3.113%24 E-03 8,.552391 E-04
2.300000 E-00 7,346027 E-03 4,570248 E-01 2.879137 E-03 9, 776775 E-04
2,400000 E-00 5.895310 E-03 9,026087 E-01 2,571927 E-03 1,.831465 E-03
2,500000 E-00 4,613937 E-03 1,390022 E-02 2, 182267 E~03 1,821228 E-03
2,600000 E-00 3,264921 E-03 1,816530 E-02 1,750231 E-03 1,024300 E-03
2,700000 E-00 2,026027 E-03 1,969277 E-02 1,263463 E-03 3.872080 E-04
2, 800000 E-00 9,912250 E-04 1,5179808 E~02 7.616202 E-04 2,026932 E-03
2.800000 E-00 2,722152 E-04 2,227249 E-01 2.972067 E-04 3. 192960 E-03
3.000000 E-00 0,00 -1,000000 E-02 0.0 0.0

PR E———————————,
Number of points: 31
Number of intervals: 4
Number of points per interval: 7 8 8 8

27



AEDC-TR-76-163

Radiance, arbitrary units

Emission Coefficient, arbitrary units

. ' o i Pl O a4

1.80 Number of Points: 31
160 Number of Intervals: 4
) Number of Points per Interval: 7888
1.40 i Data and Uncertainty
1.20
1.00
0.80
0.60
0.40
0.20
0 1 1 1 1 1 1 2
0 0.60 1.20 1.80 2,40
Displacement, arbitrary units
Figure 2. Intensity for four-interval
ex2 test data.
0.72 T Number of Points: 31
0.64 Number of | ntervals: 4
) Number of Points per Interval: 7888
0.56 1 Propagated Uncertainty
0.48
0.40
0.32
0.24
0.16
0.08
0 b

3.00

0.60 120

Radius, arbitrary units

1.80

2.40

Figure 3. Emission coefficient profile for four-interval

e*? test data.
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Table 3. Inversion Result with Six-Interval
ex2 Values Used as Input Data

——
Percent Error
Dsacsment  JudlmeFewen Radun pgon Gotioem (Shmdrd Devatin
Calculated Radiance

0.0 1.000057 E-00 5.727384 E-03 5. 644821 E-01 1,887621 E-01
1,000000 E-O01 9.900608 E-01 1,085800 E-03 5.587444 E-01 1,589008 E-01
2.000000 E-01 9.607041 E-01 -8.935534 E-03 5.419311 E-01 8.748871 E-02
3,000000 E-01 9, 138023 E-01 -1,387761 E-~02 5,151949 E-01 4,.705685 E-02
4, 000000 E-0O1 8.521048 E-01' -4, 125894 E-03 4,802804 E-01 6.393484 E-02
5, 000000 E-O1 7.788967 E-01 1,241464 E-02 4,390731 E-01 4,250269 E-02
6,000000 E-01 6.978503 E-0l 2,441074 E-02 3,932836 E-01 2,312669 E-02
7,000000 E-01 6.129501 E-01 5,388051 E~02 3,.452108 E-01 2,111331 E-02
8.000000 E-01 €.280066 E-01 1,359116 E-01 2,972415 E-0: 2,471708 E-02
9. 000000 E-~01 4,460712 E-01 -5, 636291 E-01 2.514763 E-01 2,046078 E-02
1, 000000 E-00 3.690464 E-01 3, 170582 E-01 2,088244 E-01 1,086935 E-02
1. 100000 E-00 2,985861 E-01 1.294751 E-01 1,6900872 E-01 7.882454 E-03
1.200000 E-00 2,366441 E-O1 =1,205405 E-01 1,335981 E-0: 9, 789215 E-03
1,300000 E-00 1.842825 E-01 =1.287393 E-01 1,035031 E-01 9, 862244 E-03
1. 400000 E-00 1.413117 E-01 3.206904 E-01 7.938548 E-02 6. 747721 E-03
1, 500000 E-00 1.060471 E-~01 6. 139940 E-01 §,027553 E-02 2.732949 E-03
1, 600000 E-00 7. 724082 E-02 -8,302233 E-02 4,413603 E-02 2,944425 E-03
1, 700000 E-00 5,489177 E-02 -1.231169 E-00 3.111812 E-02 2.669870 E-03
1, 800000 E-00 3, 854€28 E-02 -1, 577005 E-00 2, 141045 E-0: 3.676396 E-03
1, 800000 E-00 2, 711363 E-02 2.278071 E-01 1,488083 E-02 1,931244 E-03
2,000000 E-00 1,881522 E-02 2, 725704 E-00 1, 060456 E-02 G. 662148 E-04
2, 100000 E-00 1.246579 E-02 2,556850 E-00 7.207111 E-03 1,797132 E-03
2,200000 E-00 7.899407 E-03 -9, 729131 £-02 4, 604004 E-03 B.499760 E-04
2,300000 E-00 4,886028 E-03 -3.089606 E-00 2, 794489 E-03 9. 729630 E-04
2,400000 E-00 3.061859 E-03 -2,832055 E-00 1.712425 E-03 4,271174 E-04
2, 500000 E-00 1,917642 E-03 -6.660687 E-01 1, 137634 E-03 7.384108 E-04
2, 600000 E-00 1,084741 E-03 -6,423344 E-Gu 7.08G608 E-04 1,008421 E-03
2, 700000 E-00 5, 185475 E-04 -2.400342 E-0: 3,841813 E-04 3.792780 E-04
2, 800000 E-00 1, 843718 E-04 -3,316390 1E-0: 1, 634415 F£-04 3.029174 E-04
2, 500000 E-00 2,315120 £-05 -8,510728 £-01 3,1983210 E-05 1,356838 E-G3
3.000000 E-00 0.0 -1,000000 E-02 0.0 0,0

Number of points. 31
Number of intervals: 6
Number of points per interval: 55555 6

29



AEDC-TR-76-163

Radiance, arbitrary units

Emission Coefficient, arbitrary units
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Figure 4. Intensity for six-interval e*? test data.

Number of Points. 31
L Number of I ntervals: 6
Number of Points per Interval: 555556

-] I Propagated Uncertainty

0 0.60 1.20
Radius, arbitrary units

1.80

Figure 5. Emission coefficient profile for six-interval

o2 test data.
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The results of this comparison point to the conclusion that the
emission coefficient values obtained using the six-interval configuration
are more accurate for the particular set of data tested than are the
values obtained using the four-interval configuration. A comparison of
the emission coefficient values obtained for the two cases with the
analytically determined values obtained by.evaluating Eq. (1) at the
proper displacement values shows that this conclusion is indeed correct.
Table 4 lists the analytical values of the emission coefficients for this
particular problem and the percent error between the analytic emission
coefficient values and the calculated values for the two cases. Of
the 31 percentage errors listed for each configuration, 26 are smaller

in magnitude for the six-interval case.

Table 5 and Figures 6 and 7 show the results of inverting the data
with a configuration of six intervals with an uneven dispersion of the
data points among the intervals--two points in the first, third, and
fourth intervals, eight points in the second and fifth intervals, and
nine points in the sixth interval. A comparison of these results with the
results of the six-interval configuration with an even dispersion of the
data (Table 3, Figs. 4 and 5) suggests that the configuration of data
with the data points dispersed uniformly among the intervals ylelds more
accurate emission coefficient values for these analytical data. This
conclusion is supported by the data listed in Table 6, which shows the
percentage error between the analytic emission coefficient values and the
calculated values for the two cases. Examination of the standard deviations
of the emission coefficients for the six-interval configuration with
an even and uneven distribution of the data points among the intervals
reveals that the even distribution provides noticeably smaller standard
deviations near the centerline. Standard deviations are also generally
smaller for larger displacement values for the even distribution, although

the differences are not as great.
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Table 4. Percentage Error Between Analytic Emission

Coefficient Values and Calculated Values

Displacement Analytic ﬁmission Percent Error Percent Error
Coeificient {(Four Intervals) {Six Intervals)
0.0 5.634561 E-01 7.256821 E-01 1,820905 E-01
0.1 5,578497 E-01 6.280903 E-01 1,603831 E-01
0.2 5,413085 E-01 3.661313 E-01 1,150176 E-01
0,3 5, 149086 E-01 -1,299259 E-02 5.560210 E-02
0.4 4, 800495 E-01 -3,609211 E-01 4,809920 E-02
0.5 4,387322 E-01 -4,0560745 E-01 7.776954 E-02
0.6 3.929919 E-01 -1,545070 E-01 7.425089 E-02
0.7 3.450153 E-01 -6,031037 E-01 5, 666415 E-02
0.8 2.969277 E-01 1,084978 E-00 1.056823 E-01
0.9 2, 504572 E-01 1,088489 E-00 4,068959 E-01
1.0 2,070764 E-01 5,020852 E-01 8.441329 E-01
1.1 1,678024 E-01 -5, 964158 E-01 7. 716219 E-01
1.2 1,332712 E-01 -1,791085 E-00 2,460397 E-01
1,3 1,037396 E-01 -2,084354 E-00 -2,279747 E-01
1.4 7.915297 E-02 1,301404 E-01 2,937477 E-01
1.5 5,918566 E-02 4,831634 E-00 1,841443 E-00
1.8 4.337465 E-02 8,008941 E-00 1, 755357 E-00
1.7 3.114230 E-02 7.650174 E-00 -7.764359 E-02
1.8 2,191468 E-02 2,418470 E-00 -2, 300878 E-00
1.9 1,510670 E-02 -8,365565 E-00 -1,494702 E-00
2.0 1,020432 E-02 -2.316850 E-01 3.922260 E-00
2.1 6, 746728 E-03 -3.504564 E-01 6,823827 E-00
2,2 4,368733 E-03 -2,872249 E-01 5, 385360 E-00
2,3 2.768276 E-03 4,004695 E-00 9.468709 E-01
2.4 1,714000 E-03 5,005408 E-01 -9,200700 E-02
2,5 1,103632 E-03 9,864114 E-01 3.080837 E-00
2,6 6. 103361 E-04 1,867651 E-02 1,610981 E-01
2,1 3,.483524 E-04 2, 626968 E-02 1,028519 E-01
2,8 1,909872 E-04 2,987808 E-02 -1,447511 E-01
2.9 9.789680 E-05 2,035918 E-02 -5,917934 E-01
3.0 3.481320 E-05 -1,000000 E-02 -1,000000 E-02
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Table 5. Inversion Results with Unevenly Dispersed
ex2 Values Used as Input Data

Percent Error

Displacement (C:a;;:':::) be‘w?;:t:::;ame Emission Coelficient (E?;:nsds::: g::;?:;?:m)
Calculated Radiance

0.00 9,999282 E-01 -7. 174047 E-03 5, 609455 E-01 8.117026 E-01
1,000000 E-01 9, 904682 E-01 4, 224036 E-02 5.588918 E-01 1.61.008 E-01
2,000000 E-01 9,610668 E-01 2, 881206 E-02 5,431304 E-01 9,991750 E-02
3.000000 E-01 9, 138335 E-01 -1,055980 E-02 5,161061 E-01 7.471066 E-02
4.000000 E-01 8,516753 E-01 -5.453786 E-02 4.804729 E-01 4,784840 E-02
5.000000 E-01 7,781568 E-01 -8, 258385 E-02 4.382930 E-01 3.127328 E-02
6.000000 E-01 6. 972846 E-01 -5, 656698 E-02 3,920035 E-01 3.470315 E-02
7.000000 E-01 6.130743 E-01 7.251822 E-02 3.442192 E-01 3.938439 E-02
8.000000 E-01 5,290217 E-01 3,284228 E-01 2,974210 E-01 3.213198 E-02
9,000000 E-01 4,.474787 E-01 -2, 499491 E-01 2,533768 E-01 2.010979 E-02
1,000000 E-00 3.690861 E-01 3,275864 E-01 2,112013 E-01 2.918001 E-02
1, 100000 E-00 2_060012 £-01 -7.373671 E-01 1,683103 E-01 2, 208935 C-02
1.200000 E-00 2.339679 E-01 -1,250211 E-00 1,294129 E-01 8,216915 E-03
1, 300000 E-00 1,850101 E-01 2,.656128 E-01 1,011093 E-01 1.103693 KE-02
1. 400000 E-00 1,443989 E-01 2,513067 E-00 8,076948 kE-02 7.790830 E-03
1. 500000 E-G0 1,088006 E-01 3. 226334 E-00 5.254847 E-02 4. 444626 E-03
1, 600000 E-00 7.871845 1-02 1. 828408 E-00 4,633172 E-02 2,182256 E-03
1.700000 E-00 5.457954 E-02 -1,792976 E-00 3.252025 E-02 1,997622 E-03
1, 800000 E-00 3.646029 E-02 -6, 903555 E-00 2, 143476 E-02 2, 740380 E-03
1, 800000 E-00 2,401706 E-02 -1, 121882 E-01 1,327453 E-02 2,9079927 E-03
2,000000 E-00 1,841107 E-02 -1, 040037 E-01 8,051b07 E-03 2,499504 E-03
2, 100000 E-00 1,222921 E-02 6. 105477 E-01 5,459507 K-03 1,413835 E-03
2, 200000 E-00 9,487126 E-03 1, 998237 E-01 4,376879 E-03 3,050172 E-04
2, 300000 E-00 7. 102601 E-03 1,087430 E-01 3.451066 E-03 7.716312 E-04
2, 400000 E-00 5,054098 E-03 6.070800 =-01 2,C17529 =-03 1, 100082 E-03
2,500000 E-00 3.383133 E-03 7. 824648 LC-01 1,883082 E-03 9,7577T74 E-04
2, 600000 E-00 2,061617 1-03 7.784823 E-01 1,260428 E-03 4,451294 1E-04
2, 700000 E-00 1,090593 E-03 5.983366 E-01 7,543510 E-04 4,054118 1£-04
2, 800000 E-00 %, 489278 E-04 1, 403659 E-01 3,714054 F-04 1,337966 E-03
2, 800000 E-00 1,018430 E-04 =5.420£63 E-01 1,148017 =-0¢ 1,938461 £-03
3,000000 E-00 0.0 -1,000000 E-02 0.0 0.0

Number of pomnts: 31
Numper of mntervals: 6

Number of points per intervel: 2 82 2 8 &
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Radiance, arbitrary units

Emission Coefficient, arbitrary units
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Figure 6. Intensity for unevenly dispersed ex2

test data.
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Figure 7. Emission coefficient profile for unevenly
dispersed e*? test data.
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Table 6. Percentage Error Between Analytic Emission
Coefficient Values and Calculated Values,

Even and Uneven Data

Percent Error

Percent Error

Displacement (Even Dispersion) (Uneven Dispersion)
0.0 1,820905 E-01 -4,.455715 E-01
0.1 1,603837 E-01 1,858055 E-01
0,2 1,150176 E-01 3.365733 E-01
0.3 5.560210 E-02 2,325655 E-01
0.4 4,809920 E-~02 8.818924 E-02
0.5 7, 776954 E-02 -1,001066 E-01
0.6 7.425089 E-02 -2,515065 E-01
0.7 5,666415 E~02 -2,307434 E-01
0.8 1,056823 E-01 -1,661347 E-01
0.9 4,068959 E-01 1,165708 E-00
1.0 8.441329 E-01 -1,992260 E-00
1,1 7.718219 E-01 3.028774¢ E-01
1,2 2.460387 E-01 -2.885074 E-00
1.3 -2,279747 E-01 -2,535483 E-00
1,4 2,937477 E-01 2.042261 E-00
1.5 1.841443 E-~-00 5.681799 E-00
1.6 1, 755357 E-00 6.817507 E-00
1.7 -7.'764359 E-02 4.424689 E-00
1.8 -2,300878 E-00 -2.189948 E-00
1,9 -1,494702 E-00 -1,212814 E-01
2,0 3.922260 E-00 -2,109521 E-01
2,1 6.823827 E-00 -1,907919 E-01
2,2 5,385360 E-00 1,864614 E-01
2,3 9, 468708 E-01 2.469732 E-01
2.4 -9, 200700 E-02 5.271464 E-01
2.5 3.080837 E-00 7.070746 E-01
2.6 1,610981 E-01 1,065138 E-02
2,17 1,028519 E-01 1,165482 E-02
2,8 -1,447511 E-01 9.446612 E-01
2,9 ~5, 917934 E-01 1,839171 E-01
3.0 -1,000000 E-02 -1,000000 E-02
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As a further examination of the technique, the 31 ordinates generated
from the function of Eq. (33) were randomly scattered by a fractional
amount bounded by +10 percent of the radiance values. The scattered data,
listed in Table 7, were tested for all the same parameter configurations
used for the unscattered data. Table 8 lists the results of inverting the
scattered data in the six-interval configuration, and Figs. 8 and 9 display

the results graphically. A comparison of this data with that shown in

Table 7. Checkout Data with Scattered e-x2
Values Used as Input Data

Displacement Intensity (Data) Standard Deviation
0,0 9, 80000 E-O1 9, 90000 E-02
0,1 9, 30650 E-01 9, 30650 E-02
0.2 1.01844 E-00 1,01844 E-01
0,3 8,23070 E-01 9,23070 E-02
0.4 8.60660 E-01 8,60660 E-02
0.5 7.24284 E-O01 1.24284 E-02
0.8 6. 97680 E-01 6.97680 E-02
0.7 5.88120 E-01 §.88120 E-02
0.8 5,43110 E-01 5,43110 E-02
0.9 4,08230 E-01 4,08230 E-02
1,0 3.45810 E-01 3.45810 E-02
L1 2. 98200 E-01 2,98200 E-02
1.2 2,55880 E-01 2,55880 E-02
1,3 1,955% E-01 1.95590 E-02
1.4 1,31000 E-01 1,31000 E-02
1.5 1,106870 E-01 1, 10670 E-02
1.8 7,48860 E-02 7.49860 E-03
1.7 5,89110 E-02 5.89110 E-03
1.8 3.56300 E-02 3,56390 E-03
1.9 2,62400 E-02 2, 62400 E-03
2.0 1,74000 E-02 1, 74000 E-03
2.1 1, 13040 E-02 1,13040 E-03
2.2 8.06520 E-03 8,08520 E-04
2.3 4,89050 E-03 4,89050 E-04
2,4 2.86750 E-03 2,86750 E-04
2,5 1.81470 E-03 1,81470 E-04
2.6 1,10120 E-03 1, 10120 E-04
2.7 7.30090 E-04 7.30080 E-05
2.8 3.93670 E-D4 3,93670 E-05
2.9 2,20400 E-04 2,20400 E-05
3.0 1,25880 E-04 1,25880 E-05

e o ———— e
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Table 8. Inversion Results with Randomly Scattered
ex2 Values Used as Input

Percemt Error
R b

. Standard Deviation
Displacement (Calculated} Data ard Emission Coefficient {Emission Coelficient)

Culeulated Radiance

c.o 9, 739692 E-01 -1, 114224 £-00 4, 841228 12-01 2.265450 L-G1
1,000000 F-01 9, 761542 E-01 4,889508 E-00 4, 952562 E-01 1. 204222 E-91
2,000000 E-0) 9, 627751 E-01 -5,465700 E-00 5,203799 K-01 1,042947 E-01
4.000000 E-01 9,271917 E-0] 4, 465221 E-O1 5.371826 E-01 5, 780840 E-02
4.020000 E-01 8, 605448 E-01 =1,338141 E-02 5. 183171 L-C1 7.839482 E-02
5.C00000 E-01 7, 715935 E-01 §,531837 E-20 %.58.525 E-C1 5,2451€0 E-02
6.000000 E-01 G, 78:933 B-O‘l -2, 7193076 L-00 3. 938677 E-01 2,803218 E-02
7.000000 E-01 5, 875534 E-01 =9,633717 E-02 3.313019 E-01 2,527556 E-02
R, 000000 E-01 5,044674 E-0] ~7.115067 E-00 2, 764865 E-01 2.974423 E-02
9, 000000 E-01 4.305500 E-0) 5.460958 E-00 2,327488 E-01 2,474729 E-02
1, 000000 E-20 3, 628808 E-0: 4. 931643 E-nC 1, 878665 Z-0. 1,31528% L-02
1, 100000 E-00 2, 590419 E-0! 2,8213282 E-01 1, 0480585 E-DI 5,276026 L-03
1,200000 E-00 2, 406352 E-Ql ~5,957774 E-00 1,341215.E-01 1, 165493 k-02
1, 300000 E-00 1, A8Y666 E-01 -3,386384 E-00 1,0644085 E-D1 1,183550 E-02
1, 400000 E-00 1, 445752 E-0! 1.043906 E-01 8.252228 E-D2 8.150877 L-0d
1, 500000 E-00 1,373517 E-C1 -2, 803520 E-00 G,227366 L-02 3.380770 E-03
-.%J0000 E-00 7,73311 E-02 3.2:0078 E-00 4.511455 E-02 3.554770 E-n3
L, 700000 E-00 9, 420396 E-02 -1.090078 E-00 3,134969 E£-02 4,824714 E-03
1, 800000 E-00 3.748272 E-02 5.173332 E-00 2,117924 E-D2 4,383155 E-03
1. 900000 E-00 2, 502468 E-02 -8.205769 E-01 1.44539¢ E-02 2.311607 E-03
2.000000 F.-00 1, 787907 F.-D2 2.747514 E-00 L.01R137 E-D2 7T.933870 E-M4
2,:C000C k-20 1,17372] E-D2 3,8385%% E-00 fi, 7984939 E-D3 2,133224 K-J3
2, 200000 I -00 7,410726 E~D3 -8.114787 E-00 4.269860 E-D3 2.523220 E-03
2, 100000 F -00 4, 635326 E-03 -5.217757 E-00 2,564192 E-D3 1, 885208 E-03
2. 100000 f -00 3,007434 E-03 4.870997 E-00 1,600111 E-03 5.088279 E-04
2, 500030 E-00 1,074182 E-03 8,843470 E-00 1, 123705 E-03 8.781242 F-04
2, 00020 E-00 1, 18708 E-03 7.738858 E-00 7.34T300 E-04 1.261554 E-C2
2, 700G E-GO &, 170468 E-04 -1.548346 E-01 4.318422 E-04 7.200620 F.-04
2,800000 E-00 2, 482553 E-04 ~3.693822 E-0! 2,075203 E-04 4,316742 E-04
2, 900000 ¥-00 5. 465260 E-05 -1,520300 E-01 6.258467 E-05 1.614008 E-03
$.000M00 :-00 0.0 -1,000000 F-02 0.0 0.0

Nenlier of pantss 31
Numher of intervals 6
Number of points per interval 5 5 5 5 5 6

Table 3 and in Figs. 4 and 5 for the case of the unscattered data in the
same six-interval configuration indicates that, as would be expected,

the results of the radiance curve fit and the emission coefficient calcu-
lations were more accurate for the case of the unscattered data. This
conclusion is supported further by the data listed in Table 9, which
shows the percentage error between the analytic emission coefficient
values and the calculated values for the two cases. Of the 31 values
listed for each case, 27 are smaller in magnitude for the case of the

unscattered data.
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Radiance, arbitrary units

Emission Coefficient, arbitrary units
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Figure 8. Intensity for scattered e*? test data.
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Figure 9. Emission coefficient profile for scattered
ex? test data.
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Table 9. Percentage Error Between Analytic Emission
Coefficient Values and Calculated Values,
Scattered and Unscattered Data

Displacement Percent Error Percent Error

Scattered Data Unscattered Data
0.0 -1,407971 E-01 1,820905 E-01
0.1 -1,122049 E-01 1.603837 E-01
0.2 -3.866298 E-00 1,150176 E-01
0.3 -4,325816 E-00 5,560210 E-02
0.4 -7.971595 E-00 4,809920 E-02
0.5 4,658263 E-00 7.776954 E-02
0.6 -2,228545 E-01 7.425089 E-02
0.7 -3,974722 E-00 5,666415 E-~02
0,8 -6, 884235 E-00 1,056823 E-01
0.9 -7.074422 E-00 4,068959 E-01
1,0 -4,447586 E-00 8.441329 E-01
1,1 -1, 729951 E-00 7.716219 E-01
1,2 6.380223 E-01 2,460397 E-01
1.3 2,611250 E-00 -2.279747 E-01
1.4 4,256720 E-00 2,937477 E-01
1.5 5,217480 E-00 1,841442 E-00
1.6 4,011329 E-00 1,755357 E-00
1,7 6.659431 E-00 -7.764359 E-02
1.8 -3, 355824 E-00 -2, 300878 E-00
1,9 8. 567907 E-00 -1,494702 E-00
2.0 -4,209002 E-01 3.922260 E-00
2,1 7.821717 E-00 6.823872 E-00
2,2 -2,263196 E-00 5,385360 E-00
2.3 -7.372242 E-00 9.468709 E-01
2.4 -6, 644632 E-00 -9,200700 E-02
2.5 8, 127228 E-01 3.080837 E-00
2.6 2,038233 E-01 1,610981 E-01
2,7 2.396705 E-01 1,028519 E-01
2,8 8.656653 E-00 -1,447511 E-01
2,9 -3.607077 E-01 -5,917934 E-01
3.0 -1,000000 E-02 -1,000000 E-02
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3.3 TEST DATA WITH DISCONTINUITY

It is the nature of least-squares curve fitting techniques to
reduce fluctuations in the data. Indeed, the techniques are designed
to possess this characteristic, making them a highly useful tcol for
reducing the effects of experimental scatter in the input data. However,
when a phenomenon such as a sudden change in slope is a vital aspect of
the raw data and therefore an important feature of the emission coeffi-
cient values to be calculated, care must be taken in manipulating the
parameters to achieve a data set configuration to attain optimum accuracy
in the resultant emission coefficient values. Since the basis of the
inversion technique is a polynomial curve fit, it is reasonable to expect
that a good radiance curve fit will be difficult to achieve when the data
possess an abrupt change in slope. To test this hypothesis, a set of data
was constructed by using the following form for the emission coefficient

function:
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By evaluating Eq. (1) for the above functional form of €(r), one finds the

associated analytical radiance function to be
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X

15< x220 (36)

Twenty-one data points were generated for input data using Eq. (36).
These input data are listed in Table 10 along with the associated values
of the emission coefficient found by evaluating Eq. (35) at the appro-
priate displacement values. Note that the sharp drop in magnitude of
the radiance between the displacement values of 15 and 16 is reflected in
the emission coefficient values at the same points. The initial radiance

data are shown graphically in Fig. 10, whereas Fig. 11 displays the emission



AEDC-TR-76-163

coefficient profile. The dotted line in Fig. 11 represents the analytic
results, Eq. (35). The smoothing process created a curve which gives
results quite different from the analytical results, as would be expected

from Fig. 10.

Table 10. Input Data Defining a Curve with a Sudden
Change in Slope

Analytic
Displacement Radiance (Data) Emission
Coefficient
o 20, 00000 0. 50000000
1 19, 97498 0. 50000000
2 19, 89975 0. 50000000
3 19, 77372 0, 50000000
4 19, 59592 0. 50000000
5 19, 36492 0. 50000000
6 19,07878 0, 50000000
7 18, 73499 0.50000000
8 18, 33030 0. 50000000
9 17, 86057 0, 50000000
10 17,32051 0. 50000000
11 16. 70329 0. 50000000
12 16, 00000 0, 50000000
13 15, 19868 0. 50000000
14 14,28286 0. 50000000
15 13,22876 0. 50000000
16 2,01094 0,09765626
17 1,63180 0.08650519
18 1,25285 0.07716049
19 0.83569 0.06925208
20 0. 00000 0.06250000
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Radiance, arbitrary units

Emission Coefficient, arbitrary units
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Figure 10. Intensity for twenty-one point sudden
change in slope data.
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Figure 11. Emission coefficient profile for twenty-six

point sudden change in slope test data.
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In an attempt to better reproduce the steeply sloping portion of
the data between the displacement values of 15 and 20, five more points
within the interval 15 < x < 20 were generated from Eq, (36). This
set of data 1s listed in Table 11 along with the associated analytic
values of the emission coefficients, The initial radiance data are
shown graphically in Fig. 12, and Fig. 13 displays the emission coefficient
profile obtained by using the 26 data points listed in Table 11 as well as
the analytic results, Eq. (35). A comparison of Figs. 11 and 13 shows
that the sudden change in slope in the emission coefficient curve is
better reproduced using the second set of data. Nevertheless, the overall
results of the inversion are quite unacceptable and seem no better than
the results illustrated in Fig. 11,

Table 11. Twenty-Six Input Data Points Defining a Curve
with a Sudden Change in Slope

Analytic
Displacement Radjance (Data) Emassion
Coeflicient

0,0 20, 00000 0. 50000000
1.0 19, 97498 0. 50000000
2,0 18, 89075 0, 50000000
3.0 13, 771372 0, 50000000
4.0 19, 59592 0, 50000000
5,0 19, 36492 0, 50000000
6.0 19.07878 €. 50000000
7.0 18. 73499 0, 50000000
8.0 18, 33030 0, 50000000
8.0 17. 86057 9. 50000000
10,0 17,32051 0, 50000000
11.0 16, 70329 0. 50000000
12.0 16, 00000 0. 50000000
13,0 15, 19868 0. 50000000
14,0 14,28286 0. 50000000
15,0 13,22875 0. 50000000
15,5 2,20671 0. 10405830
16,0 2,01004 0.09765626
16.5 1.81998 0.09182736
17,0 1,63180 0.08650519
17.5 1,.44389 0,08163265
18,0 1,25285 0.07716048
18,5 1.05341 0.07304602
18.0 0,83569 0,06925208
18.5 0. 57455 0.06574622
20,0 0, 00000 0.06250000
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Figure 12. Intensity for twenty-one point sudden
change in slope data.
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Figure 13. Emission coefficient profile for twenty-six
point sudden change in slope test data.
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It should be noted from examination of Figs. 10 and 12 that the por-
tion of the radiance curve possessing the steep slope is not well repro-
duced in either case. In fact, portions of the fitted curve in the
steep slope region lie entirely outside the standard deviation error

bounds on the radiance data.

It is clear from these examples that it is not always possible to
adequately fit the data by the use of the least-squares spline fit
technique described herein. It is reasonable to expect that when the
data are not well fitted the resultant emission coefficients will not
be accurate. This conclusion is supported by examination of the data

in Tables 10 and 11 and in Figs. 11 and 13, which deal with the emission

coefficients for the radiance data of Figs. 10 and 12, Consequently,
in such cases, a different approach to the inversion or a different
set of fitting functions, something which has the potential of modeling

the discontinuity, should be used.

3.4 APPLICATION TO EXPERIMENTAL DATA

As an illustration of the application of the inversion technique
to typical experimental data, inversion results for the radiance profile
of a selected spectral line from an argon arcjet are presented. The
detalls of the experiment and implications of the results are included
in Ref. 16. The radiance profile is shown in Fig. 14. Data from both
sides of the centerline are included to indicate the symmetry of the
plume and to provide additional data for the least-squares curve fit.
The bars shown in Fig. 14 represent a typical two-standard-deviation bound
for the data, and the curve represents the results of the least-squares
spline fit. The results of the inversion and error propagation are
shown in Fig. 15. The error bars represent the two-standard-deviation
uncertainty at each of the radii. The largest standard deviation, that
on the centerline, represents approximately a 10-percent uncertainty in
the corresponding emiséion coefficient. The results represent the apparent
best fit to the data, as determined by the propagated error, and represent

physically acceptable results.
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Figure 14. Typical lateral radiance scan from argon
arciet at X/D = 2, 415.8 nm.
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Figure 15. Typical emission coefficient profile from argon
arcjet at X/D = 2, 415.8 nm.
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4.0 SUMMARY

A method of performing Abel inversions and a method of determining
the propagation of the associated experimental errors has been presented.
The Abel inversion is applied to the problem of determining the radial
distribution of emission coefficients from observations of the radiance
from a cylindrically symmetric radiating source. The particular scheme
for solving the Abel inversion problem is a least-squares polynomial
spline fit technique. The spline fit technique involves the division of
the raw data into several intervals and the least-squares curve fitting
of the data points in each interval to a sixth-degree even polynomial.
The ordinates, slopes, and second derivatives of the polynomials are
required to be continuous at the interval boundaries. Thus the polynomials
are constrained so that the total data profile is smooth and yet provides
the best fit of all the data in the least-squares sense. The Abel
inversion of the resultant polynomial model of the data is obtained

analytically.

. The associated error propagation analysis is developed by casting
the numerical equations selected to perform the curve fit and integration
into a form in which the problem can be viewed as a linear transformation
from the raw data to the inverted results. In this manner, the variance-
covariance matrix of the raw data can be directly transformed to the
variance-covariance matrix of the emission coefficients. The result of
the error propagation analysis provides an objective basis for the sub-
jective determination of the series of polynomials providing the most
nearly correct fit to the raw data and resultant emission coefficient.

A computer program to perform the least-squares spline fit and associated

error propagation analysis is described in Appendix A.
To determine an acceptable least-squares polynomial spline fit for

a particular set of data, there are generally four parameters to be

considered: (1) the total number of data points, (2) the number of

47



AEDC-TR-76-163

intervals into which the data are divided, (3) the number of points per
interval, and (4) the displacement distribution of the data points. It
has been shown that the parameter configurations of randomly scattered
data which yield accurate emission ccefficient values are generally the
same parameter configurations which yield accurate emission coefficients
for data without scatter. However, when the data curve possesses an
abrupt change in slope, it is generally not possible, using a polynomial
function, to arrange the data parameters into a configuration that'yields

an acceptable curve fit,

Although the development of the error propagation method has been
applied specifically to a particular least-squares spline fit scheme, the
method can be applied, with appropriate modifications, to any least-
squares polynomial approximation or polynomial spline fit technique.
Therefore, the error analysis technique can serve as a means of comparing

the applicability of various schemes to the same problem.

It should be noted that each set of experimental data is unique,
and the choice of data parameters must be based upon an analysis of
the standard deviations generated for each data set. The error analysis
process described provides an objective basis upon which a subjective
judgement can be made concerning the acceptability of the results obtained
by the application of the least-squares polynomial spline fit technique

to a particular problem.
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APPENDIX A
COMPUTER PROGRAM DOCUMENTATION

A.1.0 GENERAL INFORMATION

The analytic and numerical approach described in the text of this
report has been coded into a computer program to effect the Abel inversion
of data from cylindrically symmetric sources and perform the associated
propagation of experimental errors. The purpose of this appendix is to
provide the description, documentation, and user manual for the computer
program. The program described herein is in an "as developed" state and
can be readily modified, as required, for more efficient operation for

Abel inversion of data other than emission data.
A.1.1 DESCRIPTION OF PROBLEM

The physical problem is the determination of the radial distribution
of the emission coefficients from measurements of the radiance from a
cylindrically symmetric, optically thin radiating source. The problem,

illustrated in Fig. A-1, is generally expressed mathematically as

R
y(x) = 2 J' 62(1') rzd};

X (I' - X )

where y(x) is the measured radiance as a function of the displacement
X, R is the overall radius of the source, and e(r) is the radially
dependent emission coefficient, to be determined. The quantity y(x)

is the usual experimental measurement. In the situation described, the

emission coefficient can be expressed as

R (4w
() = = ] j‘ (dy/dx) dx
T 2 2.4
r)

Fox -
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However, because y(x) is subject to experimental uncertainty, there is
uncertainty in the derivative dy/dx. Furthermore, variations in dy/dx
can have pronounced effects upon e€(r) if the evaluation proceeds directly
using raw data. Consequently, a smoothing process for the data coupled
with a means of determining the effects of propagating the experimental

uncertainty through the smoothing and subsequent inversion is required.

Cylindrically
Symmetric
Radiating Source

elr}

r
Expenmental

Measurement
ym %

yi) = 2 f e(r)rdr

r2)1/2

Figure A-1. lllustration of the physical problem.
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The smoothing can be accomplished readily by least-squares
techniques, and, with the proper choice of fitting function, the
determination of the emission coefficient can become analytic. The
details of the mathematical development of the equations for smoothing
and subsequent emission coefficient and error propagation are given in
the body of the report. The problem may be summarized by noting that
a set of data points {(x, y)}, where x is the independent variable and y
is the dependent variable, are to be curve fit to a series of sixth-
degree even polynomials. Each polynomial is to be valid over a specific
range or interval of the data, and adjacent polynomials are to be smooth
in both the function and its first derivative; the second derivative is
to be continuous at the interval boundaries. The series of polynomials
is to be further constrained so that they provide the best least-squares
fit to the data. The mathematical problem is solvable by Lagrange's
undetermined multipliers. Subsequent to the least-squares curve
fitting, the last interval is fitted with a polynomial to insure zero

slope and ordinate at the outer edge of the data.

The dependent variable, y, at any point, x, is thus expressible by

the equation
6

2
y(x)=a;x + a,X + ai3x4 + ByX (a-1)
where the subscript i denotes the ith interval such that
Z._, S x 27 (A-2)

where the Z's are the interval boundary points. By writing Eq. (A-1)

for each of the dependent variables (radiances) measured, one can evolve a
system of equations linear in the unknown coefficients, a 95 349> 349,

and a4 The introduction of the constraints provides additional equations
also linear in the unknown coefficients and Lagrange's multipliers. The
mathematical curve-fitting problem is thus expressible in matrix vector

notation as

BA = C (A-3)
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where the matrix A is the (7n - 3) by 1 matrix containing the coefficients
of the polynomials and the Lagrangean multipliers and n is the number of
intervals into which the data have been divided; B is a (7n - 3) by

(7n - 3) symmetric matrix of functions of the independent variable, x,

and the interval division points, z; and C is a (7n - 3) by 1 matrix con-
taining functions of the independent and dependent variables. The
matrices B and C are described in greater detail below. The objectivé

of the curve fitting technique is to obtain the solution of Eq. (A-3) for

the column vector A,
The matrix B may be partitioned thus:

B ? N (A4).
- INT o

where R is a 4n by 4n block diagonal matrix and N is a 4n by (3n - 3) block

band matrix, each of which may be further partitioned thus:

LS
Py
Py
R = ' (A‘S)
p
n
Q,
-Q, Q
-Qy Qg -
‘N = —03 . * (A-6)
. Qn_]
—Qﬂ-]
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are each 4 by 4 symmetric matrices which are

(A-7)

(A-8)
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The matrix C in Eq. (A-3) is expressed as the product of two
matrices,
C = GY (A-9)

where G is a (7n - 3) by p matrix of certain powers of x (the p-
independent data points) and y is a p by 1 matrix of the p-dependent

data points. The matrix G may be partitioned into a block diagonal matrix

S)
Sg
] 0
G = (A-10)
0 .
Sn
where each Sj is a 4 by mﬁ matrix
aad —
1 1 1
x2 x2 x2
ml._1+1 mj_1+2 mj_1+ mj
<4 , 4 4
Sj= mj—1+ xmj_1+2 e xmj—-l+mj (A-11)
x6 x6 e . x6
mj_1+1 m]._1+2 mj_1+mj
. -

With each of the elements of B, G, and Y thus defined for a given set
of data (x,y), solution to Eq. (A-3) is immediate, yielding a vector
containing the coefficients of the polymonials satisfying the least-

squares spline fit criteria. The solution can be expressed as

A

L (A-12)

where

% -B!g (A-13)
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With the dependent data thus expressed as the evaluation of a

polynomial, the emission coefficient,

() = 1 R (dy/dx) dx
Toon b2 2% (A-14)
(x" =1 )

is analytic. Since the range of integration is over x, and the dependent
variable, y, is expressed by different polynomials over different ranges
of x, the integral, Eq. (A-14), is expressed as the sum of integrals,

each valid over a different range; i.e.,

T (x' =1 (" -r

Z,
1 J-]. dy/dx dy’dx
E(r)=—; I —m E I 2 'A dx (A-15)

Or, substituting the polynomials for the dependent variables,

2 2 %

{(x =71 ) 4 2 2 6
e(r) = ~ — [232.j—l el IR {(x"+ 2r°) + T5 %4,j-1
Zj‘] - (x2 rz)%

< rald 2 2 s _Z__—___ [2a__ Ant

(3x" + 4xr" + 8r )]r - 2i ( 6)

i=j
2 2 4 Z;

+ Las. (x2+2r2) . 5 a,, (3x4 + 4xr + 8r )] I

3 ! 15 ! Z,

which is linear in the polynomial coefficients. Thus, the results of
evaluating the emission coefficient at several independent data points

can be expressed in matrix vector notation as
E = MA (a-17)

where E is the columm vector of emission coefficients evaluated at
m values of r, A is the coefficient matrix determined as the solution
to the least-squares spline problem, and M is an m by (7n - 3) matrix

defining the coefficients of the respective elements of A.
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Substituting for A, the emission coefficient may be expressed as
E o= v ' 6y (4-18)

which expresses the emission coefficient as the result of a linear

transformation of the data, y.

With the emission coefficient described as the result of a linear
transformation from the data space, it is an easy step to provide the
transformation of the uncertainties of the data to uncertainies of the

emission coefficient.

Let
F - VB~ 'G (a-19)
so that
E - FY (A-20)
Then
(El,, = FLY) F' (A-21)

where the []cv symbol is used to describe the variance-covariance matrix

of the parameter enclosed.

The objective of the computer code presented herein is to calculate
the elements of the respective matrices M, B, G, and Y from input data
{(x, y)} so that the coefficient vector A and the transformation vector
F are determined. Further, for input [Y]cv’ the [E]cv values are

determined.

A.1.2 LIMITATIONS

As written, the computer program is subject to the following

restrictions and limitations:
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1. There can be no more than 51 data points.,
2, There can be no more than 10 intervals.
3. There must be at least one point per interval.
4. There must be at least two intervals.

5. The variance-covariance matrix of the raw data must

be diagonal.

6. The input data must be read in by increasing displacement.

A.2.0 PROGRAM DESCRIPTION

The program in its present form requires approximately 150 K bytes
of core on the IBM 370/165 computer, is composed of six Fortran subroutines
or functions and a main program, and will perform the computations for 31
data points distributed into four intervals in about 1/2 sec. The time
required per case, of courée, varies according to the number of points,

intervals, and points per interval.

A.2.1 SUBPROGRAM DESCRIPTIONS

A short description of each pertinent routine used in the computer

program is listed below.
MAIN PROGRAM

The main program provides the logic for the computer program to
execute multiple cases, the proper calling logic to the various routines
which effect the data input, inversion, and errors propagation analysis,

and the program summary output. The program utilizes two output units:
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the line printer and logical unit 8. The logical unit 8 provides an
additional temporary storage device so that the results of the analysis
may be used in subsequent amalysis programs by job stepping. Multiple
data cases are accomplished simply by putting the proper logie inside

a Do-loop.
SUBROUTINE INPUT

As the name implies, this subroutine provides for the input of
all data on logical unit 5. The subroutine includes calibration
calculations to provide for conversion of the input raw data units to
physical units. The input data in raw and calibrated form are output
on logical unit 6. All communication with this subrountine is through
COMMON.

SUBROUTINE INVERT

This subroutine provides the logic to perform the least-squares
spline fitting of the data and determination of the coefficients and
transformation matrix. The bulk of this work is accomplished in SUB-
ROUTINE COVCAL. However, subsequent to the call to COVCAL, the subroutine
recalculates the coefficients for the last interval in order to assure
meeting the constraints of zero slope and ordinate at the outer edge of
the data. The final set of calculated coefficients are output on logical
unit 6, and the percentage difference between the input data and the
results of the curve fit are calculated. All communication with this
subroutine is through COMMON.

SUBROUTINE COVCAL
This subroutine provides for the determination of the elements of

the matrix B [Eqs. (A-3), (A-4), and (A-5) through (A-8)], the matrix
G [Eqs. (A-9) through (A-11)], the matrix M [Eq. (A-17)] and the matrix
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F {(Eq. (A-19)]. With these matrices, the polynomial coefficients, the
emission coefficients, and the propagated variance-covariance matrix

are immediate. The calculations proceed calculating sequentially as

follows:

1. The array G [Eq. (A-9) through (A-11)], identified in Fortran as XI

2. The array B and B_1 [Eqs. (A-3) through (A-8)], identified in
Fortran as (XTX)

3. The coefficients array A [(Eq. (A-12)], identified in

Fortran as AV
4. The array M [(Eq. (A-17)], identified in Fortran as XTX)
5. The array F [(Eq. (A-19)], identified in Fortran as XT)
6. The array [E]cv [(Eq. (A-21)], identified in Fortran as VC.
All communication with this subroutine is through COMMON.

SUBROUTINE EMSCAL

This subroutine provides the logic for calculation of the emission
coefficients at each of the radial positions, Eq. (A-16), numerically
equal to the input displacement positions. The calculation proceeds by
Do-loop, and tracking of the point with respect to the interval boundary
points is maintained so that the correct coefficients are used in the
integral evaluation. Communication with this subroutine is through the
argument list: No. of points, No. of intervals, interval endpoints,
displacement array, curve fit ceefficient arrays, and resultant emission

coefficient array.
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FUNCTION EMFUN

This double precision function performs the numerical evaluation
of the Abel integral at either the upper or lower limit when the
intensity is described by a four-term, sixth-degree even polynomial,
Eq. (A-16). Input arguments include the radius, the upper weighted
by the exponent of the corresponding independent variable (that is,
2a2,
of the polynomial.

4a3, 6a4). These weighting factors arise from the differentiation

SUBROUTINE MATINV

This is a standard service routine which obtains the inverse of a

matrix by Crout reduction with partial pivoting.

A.2.2 LIST OF FORTRAN VARIABLES

A Spontaneous transition probability (sec-1)
A1(I) Curve fit coefficient for the Ith interval, Eq. (A-3)
A2(1) Curve fit coefficient for the Ith interval, Eq. (A-3)
A3(1) Curve fit coefficient for the Ith interval, Eq. (A-3)
A4(I) Curve fit coefficient for the Ith interval, Eq. (A-3)
c1 Recalculated coefficient for last interval:

A1(NTVL)
c2 Recalculated coefficlent for last interwval:

A2 (NTVL)
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Cc3

C4

CAL2

CAL3
CALSY

CALS}
CAL6

DEN

DISP

EMILS

EN

ENDPT

ENTEN

F1
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Recalculated coefficient for last interval:
A3(NTVL)

Recalculated coefficient for last interval:
A4 (NTVL)

Calibration constant for intensity according to:

ENTENca = (ENTEN -~ ZERO) *CAL2

1 input

Calibration constant for x according to:

DISP = (DISP ~ CAL3) * CAL4
c in

al put

Not used

Intermediate computational variable
Intermediate computational variable

Array of displacements at which data are taken
Vector E of emission coefficients

Energy level (cm—l), not used

Array of interval endpoints

Vector Y of radiances at the x locations in
DISP

Intermediate variable

Assignment statement subprograms for the computation
of Eq. (A-16), Subroutine COVCAL
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F2

F3

FAC

HEAD

IBOT

ITIME

ITOP

J1

J2

J24

JC

Assignment statement subprograms for the computation

of Eq. (A-16), Subroutine COVCAL

Assignment statement subprograms for the computation
of Eq. (A-16), Subroutine COVCAL

Fractional value of input radiance data which is

to be taken as the standard deviation of the radiance

Statistical weight

Alphanumeric header for identification

Index

Index

Code to indicate whether x locations and interval

sizes are the same from one data set to the next

NIVL + 1

Index

Index

Index

Index

Index

Index
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K1 Index

K2 Index

K3 Index

K4 Index

L Index

LIN Line Counter index

ﬁZ Index

M3 Index

MD JANTVL = 3 = 7n = 3

MSV Intermediate variable

NPNTVL Number of points in the Ith interval, my
NPT Total number of data points, p
NPT1 Computational variable

NSETS Number of sets of data

NTLO Computational variable

NTVL Number of intervals, n

NTVL4 Computational variable
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NTVL41

NTVL42

PERROR

PI

RO

SD

SUM

T1

T2

T3

vC

WORK

Computational variable
Computational variable

Percentage error between curve fit radiances

and input data values

3.14159265

A particular x value passed to EMFUN from
subroutine EMSCAL

Overall radius of source, Ro

Array of intensity data standard deviations
Intermediate computational variable
Computational variable used to compute Eq. (A-16)
Computational variable used to compute Eq. (A-16)
Computational variable used to compute Eq. (A-16)
Emission coefficient covariance matrix [E]cv

Wavelength (angstroms), not used

Array containing the squares of the interval

end points
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XT

XTX

Y1

Y1P

YSPLN

Z1

22

Z12

Z13

Z21

222
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Intermediate computational variable in subroutines
INVERT and EMSCAL: array used first to store the
elements of the matrix W, and next the elements

of the matrix F EY]cv in subroutine COVCAL

Array containing the elements of the matrix G, and

then the elements of the matrix F

Array containing the elements of the matrix ﬁ,
next the elements of the matrix B_1, and finally
the elements of the matrix M

A particular endpoint passed to EMFUN from EMSCAL
Intermediate variable

Array of curve fit intensity values

Array containing data intensity vaues
Intermediate variable

Intermediate variable

Intermediate variable

Intermediate variable

Intermediate variable

Intermediate wariable
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ZERO Calibration constant for radiance according to:
ENTEN = (ENTEN, - ZERO) CAL2
cal input
ZSPLN Array containing squared x values

A.3.0 INPUT/OUTPUT

The input consists of certain control parameters defining the logical
arrangement of the physical data, the radiance data and the corresponding
position (measured from zero on the centerline) and standard deviation
estimate, and calibration factors. In addition, there are four input
parameters which are not used in the inversion but are passed on to the
output data unit for subsequent use. When narrow spectral line data are
inverted, the four additional parameters can be used for the atomic
constants characterizing the radiation. The output consists of input
data, calibrated data, certain intermediate calculation steps, and final

results. The output is clearly labeled.

The principal input physical parameter is the radiance (radiated
power per unit area per unit solid angle). The principal output physical
parameter is the emission coefficient (radiated power per unit volume per
unit solid angle). The specific units of the calculated emission coeffi-
cient will be consistent with the units chosen for the input radiance and
displacement. There is no internal unit conversion provided other than

with the calibration factors.

A.3.1 INPUT DATA CARDS

Card No.
and Format Fortran Variable Description
1. (13) NSETS Number of sets of

data to be radially

inverted.
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2. (20A4)

3. (6E12.0)

4. (313)

5. (2613)

HEAD

WL,A,G,EN

NPT
NTVL
ITIME

(NPNTVL(I),I=1,NTVL)
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Header card to provide
means of identifying
uniquely each set of

input data.

Four variables not
used directly in the
calculation but passed
through to the output
unit for subsequent
use. For narrow
spectral line
emission data these
may be wavelength,
transition proba-
bility, statistical
welght, and energy

level respectively.

Number of data points.

Number of intervals.

= 0 if only the
radiances have
changed from the
previous data set.

= 1 each time a new
set of data 1is

run.

NTVL values: each
value is the number
of data points in
the corresponding

interval.
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6. (6E12.0) DISP(I) The displacement
ENTEN(I) radiance and standard
n. SD (I) deviation data from
I=1, NPT the centerline to the
outer edge, two sets
per card.
nt1. (6E12.0) ZERO Radiance data calibra-
CAL2 tion according to
I = (ENTEN - ZERO)*CAL2.
CAL3 Displacement data
CAL4 calibration according
to X = (DISP - CAL3)
*CAL4.
CAL5 Not used.
CAL6 Not used.

For multiple data sets, repeat cards 2 through n+1.

A3.2 OUTPUT

The printed output, on logical unit 6, consists of five pages/case,
and the identification and logic of the output are self-evident. The
printed output consists of 1) input data, 2) calibration data, 3) curve

fit coefficlents, 4) emission coefficient, and 5) propagated errors.

In addition to the printed output, the various quantities are
written (formatted) on logical unit 8 for offline storage of results or

use by subsequent job steps. This output is listed as follows:

Record No.

and Format Output List Description
1. (I3) J Case No.
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2.

3'

6.

(20A4)

(4D20.13)

(2613)

(4D20.13)

(4D20.13)

(4D20.13)

(4D20.13)

(4D20.13)

HEAD

WL,A,G,EN

NPT, NTVL,

(NPNTVL,I = 1, NTVL)

(a1(1),A2(1),A3(D),

A4(I),I = 1, NTIVL)

(ENDPT(I),I = 1,NTVL+1)

(DISP(I),ENTEN(I),I = 1,NPT)

(PERR@R(I),I = 1,NPT)

(EMIS(I),I = 1,NPT)
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Case identification.

Four variables
passed from input
to this output
record; not used
in the radial

inversion.

No. of points,
No. of intervals
and No. of points

in each interval.

The curve fit

coefficients for

each of the intervals.

The endﬁoints of

each interval.

Ordered pairs of
displacement and
radiance, two pairs

to each record.

Percentage error
between input and

fitted radiances.

Calculated emission

coefficients.
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10, £4D20:13) (sp(1),I = 1,NPT) Standard deviation of

input radiances.

11 +(4D20.13) (vcLi),I = 1,NPT) Emission coefficient

standard deviations.

A.3.3 SAMPLE INPUT SHEET

ARO CARD FORMAT

408 TITLE PRCJECT NO. [ PROGRAMMER PAGE DATE

. oF

;I’llQ Ill Il 10 Il! |I_l_l__ﬂ ﬁjﬁ 28 ”r [I‘ _[‘ 40 42 44 “Vll ”_g E_}__!_g 62 64 66 68 TO T2 74 76 T %0
C'RECIKS[UT] JoafiA] Jub |t iG] [dExipy [-xi*ixi) | [HeR] Jt Npjui Dlalth
oLiol [ 1]]! 1 !
TRIIE i |
EEDHDDINE |1 | 1] NN
0.0, 11 1]m.ol] Jol.lo 0.1 . |9i9jolols ol. fo]els
o.2 1] [o]. ole ofr o fol. fojoisla} | | [ | [ bLJa| [o]. s[1]asls ol. lojsf |4
1?7' : nlL 7 : ’ ’u Jﬂllglsi: ‘% ) zslg"lﬁgil‘ﬁ‘ﬁ‘li_osz‘{‘ﬁ’u_"! L :.IZrluau sr_ij“%;‘l'g‘slz‘gg%“n T 73 15 uE
[of...‘ 1‘5 8__In_ | ?.‘1%F¥T%_gﬁﬁqfn¥—!juo”{{“ 44 46 “o%isfﬁz—pg“gﬂepgﬂ‘:ﬂﬁ'\ﬁ-!- J4_T6_T8_80
[P T Tt e B [T PRl (T 1ok Ol 4pleL [T T[T l-bkbl !
WO 9] sis[7j8l8 ol.|0sls 1).J1f [0]. [2]ojs 2] oi. lofzlols
1.2 0 || 1]]oi2slsjols ol.|ofalsy 1. js] [o]. |8} sfs b|. ola]sis
pal i fo[. Ta]4lole[e] | DRCEDE 1).]s fol. [1jols |4 0.Jo1/ols|
TR lol. joj7[7]s|ofs] ol.[oloj7 1.p7 lo]. lo}sls[5]7] 0. |ojo]s}s|
f.s 1] ]]]] ol bolslsl sl ol.1o[ois(s! 1l.}o 0.]0/27/o[sl2 ol. o[ dzfr TTTT]
ij g '.i [u lg tllllslaétﬁhid_M'gJ! :1';_'[47'—43 ﬁ-ﬁ“T‘:Lg"l"sﬂ:l: HL;_:-ZO:JE%_" T n: Inhi;—#_
] wlaloml] L s sl [ 1ol Bl 11 L1 L ok lolae ] [-loise. [sblel [ [l-bkll L1 11 1]
R.e 11T sl pis[aa] [ |jols] L Isials] -Jojal2]. | ! ] n]. Malo]a] - o]slol. [1)0]s] ol i
ith.fs]. 5 j° § ﬁ?:n i of—!ﬁ}.ﬁ”‘ ‘.‘oﬁbﬂ“ i ‘—m;—!_!ﬂfﬁf e:jau i Tol“ T
AUl [T TTT o[ -PPlo T F B[ [1-sBeL [T [-loskL e[ ] [T Floklol-[42] [Ty
ls[.jo | 1] Jals[afa] T [-Jola] T1.JaRIs] TT T-Jols] [T T B
o!.lo i 1].[of { [ lo].]o] | | af [of i
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CALL INPUT

|

CALL INVERT

l

CALL EMSCAL

A.4.0 FLOW CHARTS

AEDC-TR-76-163

Print
Inversion
Data

Output
Inversion
Data on
Tape

MAIN PROGRAM
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Input
Raw Data

Print
Raw Data

|

Calibrate
Raw Data

Compute
Interval
Endpoints

|

Print
Calibrated
Data and
Endpoints

SUBROUTINE INPUT
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‘IEHHHHI'

CALL COVCAL

Calculate New
Coefficients
for Last
Interval

Print
Coefficients
of All
Intervals

|

Calculate
Intensities
and Intensity
Percentage Errors

‘HHHHHHI'

SUBROUTINE INVERT
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‘ Start '

Store in XT Compute
the elements W = B'IG.
I of the (7n - 3) Store in X.
by p matrix G.

Compute
Define biJ, i=1 ..., 4n A = WY.
..., 4n, where Store in AV.
II B=[bi .'a (7Tn - 3) by

{7n - 3) matrix. Store
these elements in XTX.

i

Define the remaining

111 elements of B. Store
in the corresponding

positions of XTX.

Call subroutine

MATINV to
compgfe the elements
of B™' which are then
Al1(I) = AV(JJ)
stored in XTX. A2(I) = AV(IT + 1)
A3(I) = AV({JJ + 2)
A4(I) = AV(JJ + 3)

SUBROUTINE COVCAL

76
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JJ = JJ + 4

Define matrix
M. Store
in XTX.

l

Compute
F = MW.
Store in XT.

AEDC-TR-76-163

4

Compute
F[Y]cv.
Store in X.

Compute
[E]cv'
Store in VC.

|

Form FX.
Store in XTX,

Compute emission
coefficient standard
deviations by
taking positive
square roots of
diagonal elements of VC.

(oturn)

SUBROUTINE COVCAL, CONCLUDED
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Enter

Yes
J=J+1
Z .‘Zl n-1 7 EZ
1 3 dx k+1 dx
€ (ry) = — f —2 /o ax + Z f > e dx
T
r (" - r 1) k=j Z (" - 2)

60

>

Note: In this subroutine, the subscript j (denoting
interval endpoint) is one digit larger than
the subscript i in Eq. (A-2).

SUBROUTINE EMSCAL
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Evaluate the term

_ 4 2 2 6 4 2.2 4
p = —mm— [2a2+§a3 (x +2r)+ﬁa4(3x + 4x"r” + 8r )]

used in Eq. (A-16)

FUNCTION EMFUN

€91-9L-41-203VY
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A.5.0 OUTPUT

CHECKOUT DATA USING DEXP (=x®X) FOR INPUT DATA
INPUT DATA

_NUMBER OF POINTS= 3] e
NUMBER OF INTERVALS= &
N R POIN PER INTER LT 08 &

INPUT DATA ARRAY

BEGINNING_BQLNT QF EACH INTERVAL®.

80

0 1.00000 0000=
1.0000000-01 9,9005000=01 9.9000000-02
=01 9.6079000=01 9,6100000=02
3.0000000-01 9+1393000-01 9¢1400000-02
L 400D~ )D=02
540000000-01 7.7880000=01 7.790000D=02
- 976800D= 980000D0=02
7.0000000-01 6,1263000=01 6,130000D0=02
94000000001 444860000-01 444900000=02
_ 140000000 00 3,6788000=01 3.6800000=02
1.1000000 00 2,9820000~01 2.9800000-02
142000000 00 2,3693000-01 2,3700000=02
143000000 00 1,8453000~01 1.8400000=02
—1e400 8 - [ =02
1.5000000 00 9.1054000 10 1.0500000=02
146000000 00 7.7305000=02 7+7000000=03
1.700000D 00 5.5576000=02 5.6000000-03
148000000 00 3,9164000~02 3,9000000=03
1.9000000 00 2,7052000=-02 2.7000000-03
ﬁZAOanQnQ_nn__. 8316000=02 1.8000000=03
241000000 0 1,2155000=02 1.2000000-~03
22000000 oo __T7+9071000=03_ _ 7.9100000=05 _
243000000 00 5,0418000=03 540400000-05
244000000 00 _341511000-03 _ 34150000005
245000000 00 1,9305000-03 1.9300000-05
246000000 00 1.1592000=03 1.1600000=05
247000000 00 6.8233000~04 6.8200000~06
2,8000000 00 3.9367000=04 _3.9400000=06
249000000 00 2,2260000=04 242300000-06
3.0000000 00 1,2341000=04_ _1.2300000=06

6.5000000-01 1.6500000 00 2.2500000 00



CHECKOUT DATA USING DEXP(=X®#X) FOR INPUT DATA
_INPUT (XoINTENSITY,STD DEV) ARRAY _

81

0,0 100000 -
1.0000000=01 9.9005000=01 9.9000000=02
_ 240000000=01 ~~ 9.6079000=01  9,6100000=02 _
3.0000000=01 9.1393000=01 9.1400000=02
_ %.0000000-01 ~ 8.,5214000=01  8,5200000-02
5.0000000=01 7.7880000=01 T«7900000~02
___6,0000000=01 6,9768000=01 _6.9800000=02
7.0000000=01 6.1263000=01 6.1300000=02
8.0000000=01 __5.2729000=0]1 © 542700000=02
9.0000000=01 4,4860000=01 4,490000D=02
_140000000 00 __3.6788000=01 _ 3,6800000=02
141000000 00 2.9820000=01 2.9800000=02
__ 142000000 00 243693000=0] 2,3700000=02
1.3000000 00 1.8453000~01 1.8400000~02
144000000 00 1,4086000=01 14410000002
1.5000000 00 9.1054000 10 1.0500000=02
16000000 00 . T,730500D0=02 _7.7000000=03
17000000 00 5,5576000=02 5.6000000=03
168000000 00 __ 3.9164000=02 _3.9000000=03
1.9000000 00 24705200002 247000000=03
240000000 00 1.8316000=02 1.8000000«03
241000000 00 1.2155000~02 1.2000000~-03
2.2000000 00 7.9071000=03 7.9100000-05
243000000 00 $.0418000~03 5+0400000-05
___ 244000000 _00 ___3.1511000=03 3.1500000-05___
245000000 00 1:9305000=03 149300000=05
26000000 00 1.1592000=03 1.1600000=05
247000000 00 6.,8233000-04 6.8200000-06
2.8000000 00 3,9367000-04 3.9400000=06
- 249000000 00 2.2260000=04 242300000=06
3.,000000D0 00 . 14234]000=04 142300000=06
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CHECKOUT DATA USING DEXP (=X®X) FOR INPUT DATA
C COEFFICIENTS

R R Al A2 YoM T A3 .. A&
0.0 6.5000000-01 =2,3410600 08 1.0775420 10 =5.,172606D 10 5.3915260 10
.. 6+5000000=01  1,4500000 00 4,2294810 09 <«2.0918690 10 243289580 10 =5,2686800 09
144500000 00 242500000 00 <=6,156878D 10 Te2967050 10 =24136476D 10 1.8108820 09
0 3,0000000 Q0 1,481143D0 11 =6,7097350 10 94248080 09 =4,2201320 08

82



CHECKOUT DATA USING DEXP(=X#X) FOR INPUT DATA

INVERSION RESULTS

83

AEDC-TR-76-163

STa. DISPLACEMENT INTENSITY (DATA) INTENSITY (CALC) PERCENT ERROR EMISSTON COEF
SWew v aaca | _ ___1.000000D0 00 _ =2,34]1060D 08 =2¢3410600 10  =2,419098D 09
2 1.0000000-01 9.9005000=01 =143147050 08 =14327918D 10 =242175710 09
3 24,0000000-01 9.6079000=01 1.1759950 08 1.2239870 10 =1.,6842780 09
& 3,0000000=01 9.1393000«01 3.5600450 08 3.895314D 10 =1,0226440 09

5 %,0000000-01] 8,5214000=0] 3.866101D 08 445369320 10 =5.3473470 08
6 5.0000000-01 7.7880000=01 649294760 07 8.,8976320 09 =5.5604320 08
7 _.6,0000000=01 ___ 6,9768000=0] _ . =5.4318400 08 =7.7855760 10 _  =1,3303660 09
8 7.0000000-01 6,1263000~01 =1.0487060 09 =147118100 11 =2.6485610 09
9 8.0000000~01 5.,2729400=01 =1.0002240 09 =1.8969150 1) =3,7914630 09
10 9.0000000-01 4+,4860000-01 =2¢3436090 08 =5.2262720 10 =445463200 09
11 1.0000000 00 3,6788U0D=0) 143316860 09 3.619892D0 11 =4,7670140 09
12 1.1000000 00 2,9820000=01 3.682346D 09 1.234858D 12 =44329970D 09
13 1.2000000 00_ _ 2,3693000=01 . 6.667638D 09 __ 248141810 12 =~ =3,155299D 09
14 13000000 00 1,8453000=01 9.9633420 09 543993070 12 =1.,2400860 09
15 144000000 00 1,4086000=01 ~ 13027370 10 9.2484520 12 . 1+2776750 09
16 15000000 00 9.1054000 10 145075070 10. =8.3443810 0] 3.8959040 09
17 16000000 00 7,7305000=02 1455923640 10  2,016990D 13 5,8a02610 09
18 1.7000000 00 $.5576000=02 1.4575680 10 2.622658D 13 T7.0R27750 09
19 _ . __ 148000000 00 3,9164000-02 142157890 10  ~ 3,1063540 13  7.43
20 1.9000000 00 2+7052000=-02 846091330 09 341824390 13 649297230 09
2] 240000000 00 _ _18316000=02 443597210 09 2,380280D 13 545947120 09
22 241000000 00 1,2155000=02 244260170 07 19959010 11 3.5772040 09
23 2,2000000 00 7,9071000=03 =3,5729390 09 =4,518646D 13  1,2127750 09
26 243000000 00 5.,0418000-03 =5.5590270 09 =1.1025880 14 =5.,5n43010 08
— 25 . 24000000 00 3,1511000-03  =6,3219160 09 =2,0062570 14 _ __ =]1,637481D 09
26 2.5000000 00 1.,9305000=03 =6+1181490 09 =3.169204D 14 =2,2331650 09
27 26000000 00 1:,1592000-03 =5.1392170 09 «444334170 16 =2,376671D 09 _
28 247000000 00 6,8233000=04 =3.6489990 09 =5.347851D 14 =2.,094670D0 09
_ 29 2.8000000 00 3,9367000-04 =149915050 09 =5.0588170 14 _ . =1,4-5707D0 09 _
30 249000000 00 2.2260000=04 =5.9892690 08 =2+6905970 14 =6.,4270450 08
R ) Rt 3,0000000 Q0 _ 14234100004 0.0 S1aP00000D. 02 .. Q0o UeE e
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CHECKOUT DATA USING VEXP(=Xx#X) FOR INPUT DATA
ERROR ANALYSIS RESULTS! STANDARD DEVIATION

DISPLACEMENT INTENSITY(UATA) STD DEV(INTENSITY) EMIS COEF STD DEV(EMIS COEF)
0.0 1.0000000 00 1.0000000-02 =2.,419098D 09 1.0070210=01
1.0000000=01 9,.,9005000-01 9.9000000-02 =2,217571D 09 9.297617D-02
2.0000000=01 9,6079000=01 9.6100000~02 =1.684278D 09 T.1923150=02
3,0000000=-01 941393000=01 941400000=02 =14022644D 09 4,4379960-02
4.,0000000=01 8.,5214000=01 8.,5200000-02 =5.347347D0 08 2.604675D=02
5+0000000-01 7.7880000-01 7.7900000-02 =5+560432D 08 3.1480350=02
6.0000000-01 6,9768000~01 6.,9800000-02 =1.330366D 09 3.490644D=02
740000000-01 6,1263000-01 6+1300000-02 =246485610 09 247101710=02
B+0000000=01 5.2729000-01 5.2700000=02 =3.791463D 09 1.86811350=02
9.0000000-01 444860000=01 %+4900000-02 =445463200 09 1.1866540=02
1.000000D0 00 3.6788000=01 3.6800000-02 =4.T767014D 09 8,4821320-03
1.1000000 00 2.9820000=01 2.9800000-02 =4,3299700 09 8.9802740-03
1.2000000 00 2,3693000-01 243700000=02 =3.1552990 09 1.01242D=02
1.3000000 00 1.8453000=01 1,8400000~02 =1.2640086D 09 9,7313310-03
1.4000000 00 1.4086000=01 1.4100000=02 1.2776750 09 743695770-03
1.5000000 00 9,1054000 10 1,0500000=02 3.895904D 09 4%,0595180-03
1.6000000 00 7.7305000-02 7.7000000-03 5.8802610 09 2,0515810-03
17000000 00 5,5576000=02 5,6000000-03 Te0B8277S0 09 _ . 2.6411470-03
1.8000000 00 3.9164000=02 3.9000000-03 T+4397050 09 3.7069940<03
1.9000000 00 2.7052000=02 2,7000000-03 6.929723D0 09 4¢1107260-03
2.0000000 00 1.8316000=02 1.8000000-03 5.5947120 09 3.6971160-03
241000000 00 1.,2155000=02 1.2000000-03 3.,577204D 09 - 24522184003
242000000 00 7.9071000-03 749100000-05 142127750 09 8,3402730<06

22300000000  __ 5.0418000=03__  5.0400000-05 _ =S» ——9:44681390=06
2.4000000 00 3.1511000-03 3.1500000-05 =1.627481D 09 1.7725340=03
245000000 00 1.9305000-03 1.9300000-05 =2+233169D 09 1763456003
246000000 00 1.1592000=03 1.,1600000-05 =24376671D0 09 9.9184920-04
247000000 00 6.8233000=04 6,8200000=06 =2.094670D0 09 - 347356500=04
2.8000000 00 3.936700D0=04 3.9400000-06 =1+4657070 09 1.9629610=03

. 24900000000 24226000004 ___ 2.2300000-06_ _  =6,6270490 08  3,0928190-03 _
3,0000000 00 1,2341000~04 1.2300000-06 0.0 0.0
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A.6.0 FORTRAN LISTING

LEVEL 21.7 ( JAN 73 ) 0S/360 FONTRAN H a3 e DATE 76,271/08.51.03

~ COMPILER OPTIONS = NAME= MAIN.OPT=02+LINECNTaS8,SIZE=0000Ky
SOURCE +EBCDICINOLIST4NODECK +LOAD 4 MAP 4NOEDI T+ 1D XREF

[ THIS PROGRAM PERFORMS RADIAL INVERSIUNS BY LEAST SQUARES SPLINE
g FITTING THE RAW DATA AND THEN INVERTING THE RAW DATA
__ISN 0002  IMPLICIT REAL*B(A=Hs0=2) .
ISN 0003 INTEGER HEAD(20)
___ISN 0004 OIMENSTON NPNTVL(10) +OISP(S1)ENTEN(51) ¢ENDPT(12)4A1(10)4A2(10)4
1 A3(10)9A4(10) sEMIS(51) 9 YCALC(51) ¢PERROR(51) 4SD(51) +VC(S1451)
ISN 0005 COMMON DISPyENTENJENDPT ROsAL¢A29A3sAkyYCALCyPERRORJEMIS,HEADy
1 WLeAyGosFNy S0WVC
___ISN 0006 _ COMMON NPT yNPNTVL4NTVL Al DRSS Ry 5
c
Bl G Ak 2P AT Sk TN 4
ISN 0007 READ(541005)NSETS
N 8 0_J=]4NSETS
__ISN 0009 CALL INPUT G - =
ISN 0010 IF(J4EQ.1) ITIME=]
c
___ISN_o012 CALL INVERT ¥ 472
C
L Bl g
ISN 0013 é CALL EMSCAL (NWTyNTVLENDPT4DISP 4A1(1)sA2(1) 4A3(1)sA4 (1) 4EMIS)
ISN 0014 LIN=50
ISN 0015 DO 30 I=]1NPT _ Chg b
ISN 0016 IF(LINLLT,50)60 TO 28
1SN 0018 ___ _WRITE(6+1000)HEAD
ISN 0019 WRITE(641003)
ISN 0020 LINEG
ISN 0021 28 CONTINUE
___ISN 0022 __WRITE(641004) L4DISP (1) yENTEN(T) o YCALC (1) yPERROR (1) 4EMIS(])
ISN 0023 LINSLINe}
1SN 0024 30 CONTINUE
ISN 0025 WRITE(84+2000) v
ISN 0026 . WRITE(8+2001)HEAD
1SN 0027 WRITE (B92002)WLsAsGeEN
_ ISN 0028 WRITE (By2000) NPT NTVLy (NPNTVL (1) 4 I=14NTVL) S0T
ISN 0029 ITOPaNTVL+]
1SN 0030 WRITE (Ae2002) (AL(I) 9A2(I) ¢AI(T) yAG(T) o I=14NTVL)
ISN 0031 WRITE (842002) (ENDPT (1) ¢I=141TOP)
ISN 0032 WRITE (8,2002) (DISP (1) 4ENTEN(I) s I=1,NPT)
ISN 0033 WRITE (842002) (PERROR (1) ¢ 1=)4NPT)
ISN 0034 WRITE(By2002) (EMIS(I)sI=]1sNPT) B e
ISN 0035 WRITE (By2002) (SO(I) s I=14NPT)
ISN 0036 WRITE (By2002) (VC(141)sI=19NPT)
ISN 0037 WRITE (641000) HEAD
ISN 0038 WRITE (643000)
ISN 0039 WRITE (6+3002)
ISN 0040  WRITE(6+3001) (DISP(I)ENTENCI)+SD(I)1EMISII) 4VC(ToI) s 1=14NPT)
ISN 0041 100 CONTINUE
ISN 0042 / RE TURN
c
ISN 0043 1000 FORMAT ('17,20A4)
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Isn
ISN
ISN
ISN

4
0044 1003

FORMAT (1X9 *INVERSION RESULTS?'+///1Xs"STALYySXy '"DISPLACEMENT 'y

2 SXo'INTENSITY (DATA) * 9SXe ' INTENSITY(CALC) ' 95Xy "PERCENT ERROR?',
-~ 3_SKy'EMISSION COEF*)

c
0065 _. 1004 FORMAT (1X91341PSEL9,6) 4
c
0046 1005 FORMAT(I3)
c
0067 __ 2000 FORMAT(2613) < o i
c
0048 200] FORMAT(20A4)
c
0049 2002 FORMAT (4D20,13) e
c
0050 3000 FORMAT (1Xy'ERROR ANALYSIS RESULTS: STANOARD DEVIATION's///)
0051 3001 FORMAT(1X¢1PSE1946)
0052 3002 FORMAT (BX¢'OISPLACEMENT ' 96X " INTENSITY (DATA)* 42Xy *STD DEV(INTENSIT
1Y) *95%9 *EMIS COEF ' 96Xy *'STD DEVI(EMIS COEF) ')
0053 END 45
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LEVEL 21.7 ( JAN 731
" COMPILER OPTIONS = NAME=

T 05/360 FORTRAN H

MAIN,OPT=024L INECNTa58,SIZE=0000K,
SOURCE +EBCOTC NOLIST 4NODECK ¢ LOAD s MAPyNOEDI T+ 10 ¢ XREF

DATE 76,271/08.51 o086

ISN 0002 'SUBROUTINE INPUT
g .
€ THIS SUBROUTINE DOES THE INPUT OF DATA FOR ABEL INVERSION
[
sl o it HelL R
ISN 0003 IMPLICIT REAL®*8(A=H40=2)
ISN 0004 INTEGER HEAD(20) < LR Eer sl TR 3
__ISN 0005 __ _DIMENSION NPNTVL(10) +DISPIS1) sENTEN(S1) ¢ENDPT(12) 4A1(10)4A2(10),
1 A3010) oA&(10) 4EMIS(51) 4YCALC(5]1) 4PERROR(S1)4SD(5]1)+VC(5]1,51)
c
ISN 0006 COMMON DISPsENTENJENOPTsRO9AL9A29A34A4, YCALCyPERRORVEMISHEAD
1 WLeAyGeFNy SD.VC &
ISN 0007 COMMON NPT JNPNTVL (NTVL
c
c
__ISN 0008 READ(541000)HEAD
1SN 0009 READ(S+1002)WLsAsGoEN
__1SN_0010 READ(S41001INPTNTVL o ITIME AR R
TTISN 0011 READ(54100) +ERR=100) (NPNTVL(T) o I®] ¢NTVL)
ISN 0012 __REAU(S41002+EXR=101) (DISP(I) ¢ENTEN(I) SD(I)o+1=1,4NPT)
ISN 0013 T READ(541002) ZEROyCAL2+CAL34CAL4yCALS+CALS
ISN 0014 = IF(CAL2+EQ.0.0)CAL2=]1,0
ISN 0016 T IF(CAL&44EQ.0.0)CALL=1,0
_ISN 0018 = WRITE(6+2000)HEAD s ey R S e
TTISN 0019 WRITE(6+42001) &
ISN 0020  WRITE(652002) NPT 4NTVL
ISN 0021 WRITE(642003) (NPNTVL (1) o [=1oNTVL)
ISN 0022 WRITE(6+2005)
ISN 0023 WRITE(692006) (DISP(1) ¢ENTENCI) »SO(1)sI=14NPT)
Cc
c CONVERT INPUT SCALE READINGS TO INTENSITIES
ISN 0024 DO 1 I=14NPT
ISN 0025 1 DISP(I)=DABS (VISP (1) =CAL3)*CALS
ISN 0026 ENDPT (1) =0.0
1SN 0027 Js
ISN o028 JS=NPNTVL (1)
ISN 0029 00 10 I=)yNPT
ISN 0030 IF(1.NEsJS) GV TO S
ISN 0032 _ =)
ISN 0033 IF (JUNENTVL*1) JSEISeNPNTVL(J)
ISN 0035 IF(1.NEJNPTIGY TO & = A
ISN 0037 T ENDPT(J) =DISPINPT)
1SN 0038 IF(JJEQuNTVL*1) GO TO §
ISN 0040 WRITE(6+3000)HEAD
1SN 0041 __ RETURN
ISN 0042 & CONTINUE
__ISN 0043 3 __ENOPT(J)=(DISP(I)+DISP(141))%0,5
ISN 0044 T8 CONTINUE
1SN 0045 __ FAC=SD(1)/ENTENC(I)
ISN 0046 ENTEN(I) =(ENTEN(I)=ZERO) *CAL2
ISN 0047 SO(1)=FAC®ENTEN(T)
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ISN
ISN
ISN
ISN
ISN
1SN
1SN

0048
0049
0050
0051
nos2
0053
005«
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
no6T
0068
0069
noro
novl
oor2

0073

O N M BTN OoOTmTeT 8 NN

100
4000

4001

1000
1001
1002
2000
2001
2002
2003
2004
2005
2006
2007
3o0n0

CONTINUE

WRITE (692004) (ENOPT (1) ¢I=]oNTVL)

WRITE (642000) HEAD

WRITE(642007)
WRITE(642006) (DISP (1) ¢ENTENKI) +SO(T) o l=]l4NPT)
ENDPT(NTVL*1)=DNISP (NPT)

RO=DISP (NPT)

RETURN

WRITE(644000)

FORMAT("1'41Xe"ERROR N NPTNVL')

WRITE(644001)1

FORMAT (///1Ky ' 121,]5)

RETURN

FORMAT (20A4)

FORMAT (2613)

FORMAT (6E12.0)

FORMAT(%]',20A4)

FORMAT (1X+ *INPUT DATA')

FORMAT (/1X+*NUMBER OF POINTS='y134/1K¢'NUMBER OF INTERVALSs='413)
FORMAT (L Xs 'NUMBER OF POINTS PER INTEWVAL1',2613)
FORMAT(/1X+'BEGINNING POINT OF EACH INTERVALEI' 3/ (1XsIPINEL36))
FORMAT (//1Xs " INPUT DATA ARRAYY)

FORMAT (IXeJ(1PELDe648X))

FORMAT (1 'INPUT (XoINTENSITYSSTO DEV) ARRAY',///)
FORMAT (*]1%420A4s/1Xe%J DOES NOT MATCH WITH NTVLY)

END
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TLEVEL 21.7 ( JAN 73 s R 057360 FORTRAN W DATE 76,271/08.51.10
convtLEI'GﬁYxons - NAMEx MAINJOPT=02+LINECNT=58,SIZE=0000K,
g a il SOURCE +EBCDICINOLIST ¢NODECK s LOAD 4 MAP 4 NOEDIT 4 1D XREF
1SN 0002 SUBROUTINE INVERT
C
TSN 0003 TMPLICIT REAL®A(A=H,0=2) e 3
ISN 0004 = INTEGER HEAD(20)
[
___ISN'nO0S __DIMENSION NPNTVL(10) 4DISP(S1)1ENTEN(51) +ENDPT(12),A1(10)+A2(10)+
1 A3(10)4A4 (105 4EMIS(S1)4YCALCIS1) ¢PERROR (S1)+SD(51)4VC (51451}
ISN 0006 DIMENSION YSPLN(10+10)+ZSPLN(10+10) +WORK(11)
N 0007 C VENTENJENDPT4ROsAL4A29 A3+ AL YCALC,PERRORJEMIS, HEADy
> e R W Ry BRENG S0sVC
1SN 0008 COMMON NPT,NPNTVLyNTVL
ISN 0009 CALL EovcaL
c
1SN 0010 Z1=ENDPT (NTVL ) ®82
ISN 0011 5 Z2=ENDPT (NTVL*1)##2
ISN 0012 212271421
RSN 9813 g13sqjeep) . s £l
T ISN 0014 221272922
ISN 0015 222=721%22
ISN 0016 Cl=Al (NTVL=1)
ISN ORIy - e o8 PR T - G e i
ISN 0018 CIsA3(NTVL=-1)
ISN 0019 A Cl4=AL (NTVL=1) il . Db SRR ORI
ISN 0020 YI=CleZ1®(C2+Z1%(C3 +Ca®Z1))
ISN 0021 YIP= C2+ 2.0% C3% 71 +3,0% Ca%212 b
1SN 0022 DEN=Z1-22
ISN 0023 _ C4=(Y1P=2,0%Y1/DEN) 7 (DENOEN) ¥
ISN 0024 C3=Y1/(DEN*DEN) =C4® (Z142,0%22)
ISN 0025 C2==72%(2,0%C3¢3,0%C422)
ISN 0026 Clu=22% (C2+22%(CI+22%C4))
ISN 0027 ALiNtuRtegy . - - TR e B
ISN 0028 A2(NTVL)=C2
ISN 0029 AJ(NTVL)=C3
ISN 0030 A4 (NTVL)=Ca
c DISPLAY COEFFICIENTS FOR THE INTENSITY CURVES
ISN 0031 WRITE (641000) HEAD
_ISN 0032 1000 FORMAT("]1'y20A4) sty R TR
1SN 0033 T WRITE(641001)
ISN 0034 1001 FORMAT (1X,*CUBIC COEFFICIENTS'+///)
1SN 0035 WRITE (641002)
ISN 0036 1002 FORMAT (2Xy ' INTERVAL START? 42X INTERVAL END'oTXs'AL%s13Xs*A2% 412X,
193 11Xy ALY
1SN 0037  WRITE(641005) (ENDPT (1) +ENDPT(I41) sALII) sA2(1) A3 (1) sAG(T) s
2 1=1,NTVL)
ISN 0038 1005 roannr«lpscls.e)
-
c CALCULATE INTENSITIES AND PERCENTAGE ERROR
ISN 0039 J=|
ISN 0040 DO 40 I=14NPT
ISN 0041 X=DISP (1) 2
ISN 0042  IF(K.GT.ENDPT(Je])®®2) yzJe]
ISN 0044 Cl=Al(J)
1SN 0045 C2=A2(J)

89



AEDC-TR-76-163

“0
“l

C3=A3(J)

Ca=As4 (J)

YCALC(I)=CleX®(C2 ¢ X#(C3+Cl*X))

PERROR (112040

IF(ENTEN(I) +EW,0.0)GO TO 40

PERHOR (1) =100+0® (YCALC(I)=ENTENCI))/ENTENI(T)
CONT INUE

CONTINUE

RETURN

END
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LEVEL 21.7 ( JAN 73} 05/360 FORTRAN H Bl ool DATE 76,271/08.51413

'COMPTLER OPTIONS = NAME= MAIN,OPT=02sLINECNT=58+SIZE=0000K,
SOURCE yEBCDIC/NOL ISTyNODECK ¢y LOAD yMAP 4 NOEDT T ¢ 104 XREF

ISN 0002 ~ SUBROUTINE EMSCAL (NPTyNTVLsENDPT40ISPyAlsA29AJsAGsEMIS)
§§N 0003 IMPLICIT REAL®B(A=H40=2)
0004 OIMENSION ENDFT (1) +DISP(X)oAL (1) 4A2(1) oA3(1) wAL(]) +EMIS(])
N oees . )
ISN 0006 00 60 I=14NPI
____ISN o007 . _EMIS(I)=0.0 . . T U
1SN 0008 - X=DISP(I)
ISN 0009 ;f!I.EOoNPTI 60 TN 60
N 0011 (KeGTWENDPT(J1)) JeJel
___ISN 0013 gy EHIS(I)lENFUNGZ.D'AzlJipb-O'AJ(J)ob.O’AQ(J)ol.[WY(JOIH
ISN 0016 IF(JLEQ.NTVL) GO TO &
___ISN 0016 _ IRRIRIeY. oo & g S e e e T
ISN 0017 D0 S0 K=IBOTyMTVL
ISN 0018 EMIS(1)SEMIS (1) ¢EMFUN(2,0%A2(K) 44+ 0®AI (K) 16, 0%A4(K) o XsENDPT(K+1)) =
2 EMFUN(2,0%A2(K) +4,0%A3(K) 46,024 (K) s X4ENDPT (K))
ISN 0019 S0  CONTINUE
ISN 0020 60 CONTINUE
ISN 0021 _____RETURN
1SN 0022 END
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LEVEL

21e7 ( JAN T3 )

0002
0003
0004
0005
0006
ono8
0009
nol1o
0011
noj2
0013
0014
0015
0016
0017
ools
no19

2

057360 FORTRAN H DATE

COMPILER OPTIONS = NAME= MAINsOPT=02+LINECNT=58,SIZE=0000K,

SOURCE +EBCDICNOLISTyNODECK s LOAD 4 MAP yNOEDIT o 1D XREF
DOUBLE PRECISION FUNCTION EMFUN(AZ2.A3yAGR4Y)
IMPLICIT REAL*8(A=Hs0-2)
PI=3,14159265
Fay*Y-R*R
IF(F.LE«1400=30) GO TO 10
F=DS0RT (F)
T1=A2¢F
T2=A3® (Y#Y+2,U%R*R) *F /3,0
TI32F® (3,0 R4sl N*REROYEY 4B, 0"R*#4) /15,0
TI=A4eT3
CONT INUE
Ti=T)eT2+73
EMFUN==T]/PI
HRETURN
EMFUN=0,0
RETURN
END
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LEVEL 21.7 ¢ JAN 73 ) T 0S/360 FOKTRAN H > DATE 76,271/08.51.20

COMPILER OPTIONS = NAME= MAIN,OPT=02,LINECNT=58,S1ZE=0000K,
SOURC;.CDCD!CvNOLlSTINODECKoLOADuﬂanNUEDIToID.IHFF
ISN 0002 SUBROUTINE COVCAL

(4
C esessTHIS SUBROUTINE PERFORMS THE ERKOR ANALYSIS OPERATIONSesees
-
ISN 0003 IMPLICIT REAL*B(A=Hy0=7)
ISN 0004 INTEGER HEAD(20)
ISN 0005 OIMENSION NpN!VL(IOloDlSPISIIoENTElel)cENDPTIIZ)oAlllo).l!(lnlv
1 AJ(IO)-l@()ﬂlvtﬂl§1§li-VCALCISI)oﬂEHROR(SIIoSD(Sl)-VC(Gl-SID'
2 XTX(6T+67) o XT(67451) 4AV(40)
ISN 0006 COMMON DISP-ENTEN|ENDPT'NOqu|AZpAJ-IA'VCALCtPERHOR.EMIS.NEAD.
1 WLeAGeEN, SOsvC
ISN 0007 COMMON NPT yNPNTVL o+ NTVL
ISN 0008 COMMON /REX/ X(67,:51)
(4
ISN 0009 F1(A4B)=(24/3414159265)*DSQRT((A®A)=(3%8))
ISN 0010 F2(AsB) = (40/(3e%3416159265) )% (DSART(LA®A)=(B*R)) )@ ((A®A)+(2,%R48))
ISN 0011 FJ(A-B)-(G.I(IS.'J.161592&5))'(DSBRT((!'A)-(BOBIl)'((].’l'l'l'l)o
1 (4e®A®AREEB) + (B, 9B%0%a%) )
ISN 0012 NTVLGmGONTVL
ISN 0013 NTVL&G]1=NTVLGe ]
ISN 0014 NTVL42=NTVL4=2
ISN 0015 MD=TeNTVL=3
___ISN o016 NT10=10*NTVL
Cc
N b g D03i=]4MD
ISN 0018 003J=1 NPT
ISN 0019 3 XT(lsJ)=0.0
ISN 0020 Kl=]
ISN 0021 K2=0
ISN 0022 K4zK]+3
ISN 0023 L=l
ISN 0024 DOSJ=] 4NPT
ISN 0025 K=(
ISN 0026 DO&4I=K] K4
ISN 0027 IF(K.,EQ40)GOTU200
ISN 0029 IF(DISP(J) «EQe0.D)GOTO210
ISN 003] XT(14J)=DISP(J) #eK
ISN 0032 G0T0201
ISN 0033 200 XT(leJ)=140
ISN 0034 G0TO0201
ISN 0035 210 XT(lyJ)=040
ISN 0036 201 K=Ke2
ISN 0037 4 CONTINUE
ISN 0038 K2=K2+]
ISN 0039 IF (K2,NENPNTVYL (L)) GOTOS
ISN 004] Kl=Kée]
__ISN o042 KasK)e3
ISN 0043 K2=0
0044 L=Le)
ISN 0045 S CONTINUE
c
ISN 0046 D061=] 4MD
ISN 0047 006J=] yMD
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2n

6 ATX(ToJ)=0.0
M2ué

Kl=]
K=]
K3=0
K2=0
I=]
JC=1
Mi=|
__MSVENPNTVL (K)
DO9J=] yNT10
SUM=0,0
DOT7L=K] yMSV
1F (K2,E0,0)GOTO202
IF (DISP (L) +EQe0,0)GOTO?
SUMSSUMeDISP (L) #oK2
GovToY
2 SUMENPNTVL(K)
Le=MSY
CONT INUE
K3=K3e]
XTX(TeJC)=SUM
XTX(JCoI)=SUM
IF (K3,FQ,M2)6UT0203
JC=JCe]
K2=K2+2
GOTU9
3 I=]e)
JC=1
X3=0
M2EM2=]
1F (M2,EQ.0)GOT0204
K2uK2« (M2=M]3)
M3IzM3e )
GOTU9
K]lsMSye]
KsK+]
MSYEMGY+NPNTVL (K)
M2=bh
K2=0
MI=|
CONTINUE

~

»

J=)

K=2

DOIST=NTVLG]yMN,3
ATX(1ad)m]lo/2e
XTX(Je T )mXTX(Lod)
RKTX(Todet)meXIX(Ted)
RTX(Jobo 1) =XTA(T 4 Jek)
ATK(TeJel)mi)le/2,) ®ENOPT (K) ®ENDPT (X)
ATX(Jel o 1) mXTR(TyJe])
XTX(ToJeS)maxiX(loJel)
ATX(JeSe1)mXTA(T4J+S5)
ATX(TeJe2)m(1a/2,) SENDPT (K) #84
XTX(Je2eTIRXTA(I4Je2)
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ISN 0107 XTX[TgJe6)m=XTX(]4Je2)
ISN 0]08 e KTXIJeba 1) mXTR(IyJe6)
ISN 0109 XTX(1eJe3)=(1/2.) ®ENDPT(K) #86
ISN 0110 XTX(Jodp[ImXTR(IyJe)
ISN 0111 KTX(ToJeT)mexTX(19Je3)
CISN 0112 XTXUJeTeI)sXTR(1eJeT)
ISN 0113 XTX(1¢14Je1) =ENDPT (K)
CISN 01L& XTX(Jelglel)mATX(Ie)yUe])
ISN 0115 XTX(T+19JeS)m=XTX(I*1sJ*1)
XTX(Je *lISATX (] +5)
ISN 0117 XTX(I¢]9J¢2)5d *ENDPT (K)®®3
_IsSN 0118 o XTR(Je2eTe)mATX(I0] 0 Je2)
ISN 0119 ATX(I#loJdob)m=XTR(I*]sJ+2)
_ISN 0120 XTR(Jeby o1 )2XTX(I¢] 4 Je6)
ISN 0121 XTX(1¢19J¢3) =3, *ENDPT (K) 05
ATX(Je ¢])=AT . .
ISN 0123 ATX(TelpJeT)m=XTX(Io19J¢I)
_ISN 0124 ATX(JoTole]) sATX (Lo ]9 deT)
ISN 0125 ATR(Ie24Je]1)=),

_ISN 0126 ATX(Jelgle2)=

ISN 0127
N L]
ISN 0129
_ISN 0130
ISN 0131

*2)=AT o2
KTX(Ie20J6) "lfl‘l‘!o."!’

_ISN 0132  XTX(Je&,]1e2)mat

I+ .
n'(NDPT (K) ®*ENDPT (K)

ISN 0133 ltx(IOZ-JOJl-lS.'EW’T(K)"b
N_0 XTX(JeIg]e2) mATX([429J¢3)
ISN 0135 XTX(1e20JeT)m=XTX (1+24J+3}
ISN 0136 KTX(JeTp[42) ATX (Jo20J0T)
ISN 0137 JuJeh
ISN 0138 _K=Ke] B il o LY
ISN 0139 15 CONTINUE
ISN 0140 CALL MATINV(XTX4MD)
ISN 0141 001311 yMD
ISN 0142 SQlasiay
ISN 0143 T 13 X1y =0,
ISN 01644 00301=]4M0
ISN 0145 D030J=1 +NPT
ISN 0146 DO30K=] yMO
ISN 0147 T30 XUIeJ)mKTX(IoR)@XT (KyJ) eX(14J)
c

ISN 0148 DO52I=14NTVL4
ISN 0149 52 AV(I)=0.0
ISN 0150 DOS3Ts]4NTVLA

__ISN 0151 ® D053J=1 NPT
ISN 0152 53 AVIDI =X (19J) SENTEN(J) +AVID)
ISN 0153 T Jel

_ISN 01564 Is)oNTVL Gl
ISN 0155 AL(T) =AV(JI)
ISN 0156 . A2(1)mAV(JJel)
ISN 0157 AJ(1)=AVIJJe2)
_ISN 0158 AGlT)=AV(JJ*3)
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ISN

ISN
ISN
ISN

ISN
ISN
ISN
ISN

ISN

1SN
ISN
1SN
ISN
ISN
ISN
ISN

ISN

0159

0160
016l
0162

0163
0164
0165
0166
0167
0]168
0170
0171
0172
0173
0174
0175
0176
0178
0179
0180
0181
0182
0183
01R4
0185

0186
0187
0188
0189
0190
0191
0192

0193
0194
0195

0196
0197
n198
0199
0200
0201

0202
0203
0204
0205
0206
0207
0204

0209

56

FNLNNTYY

D0311=] NPT

el SERRRIRAEND S o

31

16
17

18
19

20

21

25

26

~

2

28

.00]191=]4NPT]

XTX(I+J)=0,0

NPT1=NPT=]
Ji=l
J2=2

D=DISP(I)

IF(D.GTLENDPTLJ1+]))GOTO1®

GOTO1 T

JizJd)+]

J22J2+4
XTX(14J2)==F] (ENDPT (J]+1)4DISP(1)) .
XTX(19J24]1) ==t 2 (ENDPT(JL141)+DISP(I))

KTX(1gJ2¢2) ==k 3(ENDPT(J141)+DISP (1))

IF (J2,EQ.NTVL42)6G0OTO19

KlzJle])

J24=J244

DO 8K=J24NTVLGL & E8 RARE o goett Sl
XTX(T4K)=F) (ENDPT (K1) +DISP (1)) =F1(ENOPT (K1+1)4DISP(I))
XTX(TyKe1)=F2(ENDPT (K1) 4OISP (1)) =F2(ENOPT(K1#]),DISP(1)})
ATX(TyK+2)=FI(ENDPT (K1) +OISP (1)) =FI(ENOPTI(KLI#1)4DISP(I)}
Kl=K]e+]

CONTINUE

NO20T=] NPT
D020J=] yNPT
AT(Led) =040
D021 I=] NPT
0021J=1 NPT
0021K=] ¢ MD
KT (Iad)=XTX(ToK)®X (Ko J)eXT (o)

D0221=1 NPT

D022J=1 NPT

XTX(Je 1)=xT (Lo )

0025T=] NPT

D025J=14NPT

X(1eJ) =040

DO261=] 4NPT

V026J=] 4NPT
X(IeJ)=XT(I19J)®*SD(.J) *SD(J)

0D0271=] NPT
D027J=1WNPT
VC(14J)=0.0
D0281=) NPT
0028J=] NPT
0028K=] oNPT
VCILaJ) =X (T oK) ®XTX (KyJ)#VC([9J)

00291=]4NPT
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PAGE 00S
TISN 0210 29 VC(I41)=DSGRT(VC(IH1))
__ISN 0211 _RETURN
1SN 0212 END
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LEVEL

21e7 ( JAN 73 )

0002
0003
0004
0005
0006
ooor
noos
0009
0010
o012
0013
0016
00le
0ol
0019
0020
no21
0022
noa3l
0024
0025
0027
no2s
0029
no3o0
0031
0033
003«
0035
0036
0037
nols
0039
0040
0041
0042
0043
0045
0046
0047
0043
0049
noso
nos1
00s2
0053
0055
0056
0057
n0SkH
nosy
no060
0061
nos2

-

&> W

*wn

0S/360 FOWTRAN H

COMPILER OPTIONS = NAME= MAIN4OPT=02sLINECNT=58,S1ZE=0000Ks

SOURCE +ERCDIC/NOLISToNODECK+LOAD +MAP s NOEDI T+ IDy XREF
SUBROUTINE MATINV (As NN)
IMPLICIT REAL®8(A=H40-2)
DIMENSION A(6/7467) sLOCATE(6T43)

DO 1| N=l,NN

LOCATE(NyI)= 0

U0 14 N=| NN

AMAX® 0,00+0

DO & 1m]4NN

IF ( LOCATE(I+3)+€Q.0 ) GO TO 2
GO TO &

00 5 Jm]4NN

IF ( LOCATE(J+3),EQ.0 ) GO TO 3
GO TD §
IF(UARS(A(IeJ))GT AMAX) GO TO &
GO 10 S

AMAX=DARS (A(lsJ))

1ROw= [

JeoL= J

CONT INUE

CONTINUE

IF ( AMAX.GT.1.,00-15 ) GO TO 7
GO TO 14

LOCATE (Ny1)= LROW

LOCATE (Ny2)= JCOL

LOCATE (JCOLe3)= |

IF ( [ROW.NE.JCOL ) GO TO 8
G0 TO 10

00 9 J=l 4NN

SWAP= A(TROW.J)

A(IROWeJ) = A(JCOLJ)
A(JCOLJ) = SWAP

PIvUT= A(JCOL+JCOL)
A(JLOL,JCOL) = 1,000

DO 11 JaleNN

A(JCOLsJ)= ALJCOLWJ) / PIVOT
D0 14 [=]4NN

IF € TJNE.JCOL ) GO TO 12
30 T0 14

Fz ACT,.0C0L)

A(T+JCOL)= O.UDe0

00 13 JE] 4NN

A(led)i= A(led) = FRACICOLWS)
CONTINUE

J0 1T N2l NN

LE NNeNe|

IF ( LOCATE(L#1)«NEJLOCATE(Ls2) ) GO TO 15
GO TO 17

[HOw=s LOCATE (Ls1)

JCOL= LOCATE (Ly2)

U0 LA KE]oNN

SwAF= A (K4 IROW)
A{KsIROW) = A(KyJCOL)
A(XKsJCOL) = SwAP

CONTINUE
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PAGE 002

ISN 0063 17 CONTINUE -
AT ]IS o e R RS
ISN 0065 .18 PRINT 1000
—ISN 0066
ISN 0067 1000 FORMAT (1H » JOXe 1SHSINGULAR MATRIX)
— 1SN o06R =~~~ END :
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T FAB-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET+MAP

DEFAULT OPTION(S) USED =

CONTROL SEC

TION

NAME ORIGIN LENGTH

MAIN
INPUT
INVERT
EMSCAL
EMFUN
coveaL
MATINV
IHCLSQRT#*

IHCFDXPI®
THCECOMH®
THCCOMH2®

IHCFCVTHe

IHCEFNTHe
IHCEF 1OS*

IHCF10S2*
IHCERAM *

IHCUOPT =
THCETRCH®

IHCUATBL®
$SBLANKCOM
REX

00

708

E98
1310
1720
1940 10
122F0
12R30

12C%0
120E0
13048

14348 1

15560
15AA8

16900
16F00

174E0
177E0

17470
18048 S|
100CA 6

ENTRY ADDRESS 00

TOTAL LENGTH

*eseSERPROG DOES NOT EXIST RUT HAS BEEN ADDED TO

26890

702
790
416
410
27Cc
9ut
83A
158

140
Fel
650
185

Su2
F28

S2k
50C

300
28E

638
D20
ACH

SIZE=(100352412288) X
MODULEEMERE"" |~ & U, e

ENTRY AN A e, ST Reas | b Sn s o Lol

NAME  LOCATION NAME  LOCATION - NAME _ LOCATION _ NAME  LOCATION
DSORT 12830 o
FOXPI# 12€90
1BCOM# 120€E0__ FDIOCSH 12E9C | INTSMYCM 33026 o G
SEQDASD 140C0 X
ADCON# 14348 FCVAOUTP 14452 FCVLOUTP  164E2 FCVZOUTP  1463A
FCVIOUTP  149EE FCVEOUTP  14EFO FCVCOUTP 15104 INT6SWCH  153F3
ARITHS 15560 ADJSWTCH  158FC S i
FlOCS# 15AA8 FIOCSBEP  15AAE
ERRMON 16F 00 IHCERRE _ 16F18
IHCTRCH 177E0 ERRTRA 177E8

DATA SET
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[E]

cv

F, FysF

1,3,k

AEDC-TR-76-163
NOMENCLATURE
Matrix of curve fit coefficients
Coefficient of x> ¥ 1 in the k™ interval

Linear transformation matrix, defined in Eqs. (13)
and (14) )

Vector representing right-~hand side of least-squares
equations, defined by Eqs. (11), (13), and (19)

Matrix of emission coefficients
Variance-covariance matrix for emission coefficients
Represents matrix product, MW

Functions in developing least-squares equations,
defined by Eq. (8)

Matrix of powers of x, Eqs. (19), (20), (21)

Radiance, generally watts/cmzlsr, but for illustrative

purposes, arbitrary units
Dummy subscripts

Matrix of coefficients of the curve-fit coefficients
Eqs. (23) and (24)

Number of points at which emission coefficient is

evaluated
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m Number of points in the kth interval

N Submatrix of B, defined in Eqs. (17) and (18)

n Number of intervals

Pj Submatrix of R, defined in Eq. (16)

Pk(x) Polynomial in kth interval, Eq. (5)

P Number of points

Qj Submatrix of N, defined in Eq. (18)

R Submatrix of B, defined in Eqs. (15) and (16}, or

outer radius of emission source

r Radial position, generally cm, but for illustrative

purposes, arbitrary units

Sj Submatrix of G, defined in Eq. (21)

Sk Sum of squares of residuals, defined in Eq. (6)
1)) Matrix product B_1G

X Displacement, generally cm, but for illustrative

purposes, arbitrary units

Y Column vector of radiance; also used in place of I in
Appendix A
[Y]cv Variance-covariance matrix for radiance
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Scalar member of Y, radiance

Right side abcecissa of kth interval

Emission coefficients, generally watts/cm3/sr, but

for illustrative purposes, arbitrary units
Lagrange's undermined multiplier

Vector of mean values of radiances

Vector of mean values of emission coefficlents
Expected value operator
3.14159265

Constraint on polynomial at Z

k

Constraint on first derivative at Zk

Constraint on second derivative at Zk
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